Completing the Square

For example:

Solve the equation by completing the square:

$$2x^2 + 12x + 3 = 0$$

Step 1

If the coefficient of x^2 is 1, then go on to Step 2. Otherwise, divide both sides of the equal sign by the coefficient of x^2 .

Since the squared term contains a coefficient other than 1...

Divide every term by 2...
$$\Rightarrow \frac{2x^2}{2} + \frac{12x}{2} + \frac{3}{2} = \frac{0}{2}$$
 ... to get $\Rightarrow x^2 + 6x + \frac{3}{2} = 0$

Step 2

Get all variable terms on one side of the equation and all constants on the other side.

$$x^{2} + 6x + \frac{3}{2} = 0 \implies x^{2} + 6x = \frac{-3}{2}$$

Step 3

Complete the square for the resulting binomial by adding the square of half (1/2) the coefficient of the x term to both sides of the equation.

a. The coefficient of x is
$$6 \rightarrow x^2 + 6x = \frac{-3}{2} \rightarrow x^2 + 6x + \left(\frac{6}{2}\right)^2 = \frac{-3}{2} + \left(\frac{6}{2}\right)^2$$

b. Divide the 6 by 2 in the parentheses
$$\Rightarrow x^2 + 6x + (3)^2 = \frac{-3}{2} + (3)^2$$

c. Square the resulting 3 and add it to both sides
$$\Rightarrow x^2 + 6x + 9 = \frac{-3}{2} + 9$$

d. Convert 9 to a fraction to add constants on right side of equation
$$\Rightarrow x^2 + 6x + 9 = \frac{-3}{2} + \frac{18}{2}$$

e. Add the fractions
$$\Rightarrow x^2 + 6x + 9 = \frac{15}{2}$$

Step 4

Factor the resulting perfect square trinomial and write it as the square of a binomial.

$$x^{2} + 6x + 9 = \frac{15}{2} \implies (x+3)^{2} = \frac{15}{2}$$

From: El Paso Community College, Tutorial Services

Step 5

Use the square root property to solve for x.

- a. Take the square root of both sides of the equation ... $\Rightarrow \sqrt{(x+3)^2} = \sqrt{\frac{15}{2}}$... to get $\Rightarrow x+3 = \pm \sqrt{\frac{15}{2}}$
- b. Subtract 3 from both sides to isolate the variable $\Rightarrow x = -3 \pm \sqrt{\frac{15}{2}}$
- c. This leaves the final answers of $\Rightarrow x = -3 + \sqrt{\frac{15}{2}}$ and $x = -3 \sqrt{\frac{15}{2}}$

Practice Exercises:

1.
$$3x^2 - 4x = 4$$

3.
$$p^2 + p - 2 = 0$$

$$2. y^2 + 8y + 18 = 0$$

4.
$$t^2 - 6t + 3 = 0$$

Answers: 1.
$$\left\{-\frac{2}{3},2\right\}$$
 2. $\left\{-4+i\sqrt{2},-4-i\sqrt{2}\right\}$ 3. $\left\{-2,1\right\}$ 4. $\left\{3+\sqrt{6},3-\sqrt{6}\right\}$