Solving a System Three Equations

with
THREE
VARIABLES

each

Example: x ·

$$x + y + z = 2$$
$$x-y+2z=2$$

$$-x + 2y - z = 1$$

1. Choose two of the 3 equations and eliminate one of the variables...

$$x + y + z = 2$$

$$x - y + 2z = 2$$

$$2x + 3z = 4$$

Box the answer

2. Now choose two other equations (a different combination), and eliminate the <u>same</u> variable as you did before...

$$x - y + 2z = 2$$
 $\xrightarrow{\text{Multiply by 2}}$ \Rightarrow $2x - 2y + 4z = 4$ \Rightarrow $-x + 2y - z = 1$ $x + 3z = 5$

Box this answer also

3. Now take the two <u>boxed</u> answers and use them to eliminate another variable...

$$2x + 3z = 4$$

 $x + 3z = 5$

Multiply by -1

 $-x - 3z = -5$
 $x = -1$

4. Now that you found x, plug it back into one of the boxed equations to find another variable...

$$(-1) + 3z = 5$$

 $-1 + 3z = 5$
 $3z = 6$
 $z = 2$

5. Plug the x and z into one of the <u>original</u> equations to find the last variable...

$$(-1) + y + (2) = 2$$

 $-1 + y + 2 = 2$
 $y + 1 = 2$
 $y = 1$

Solution: (-1, 1, 2)

Solving a System Three Equations

with a
MISSING
VARIABLE

Example:

$$x + y + z = 6$$

$$x - y + 2z = 5$$

1. Choose the two equations that are <u>not</u> missing a variable, and eliminate the variable that is missing from the third equation...

$$x + y + z = 6$$

 $x + y + 2z = 5$
 $2x + 3z = 11$

2. Take the result from step 1 and pair it with the original equation that was missing a variable. Eliminate another variable...

$$2x + 3z = 11$$
-x - z = -4

Multiply by 3

Multiplied by -1
to get a positive x

$$x = 1$$

$$x = 1$$

3. Now that you found x, plug it into one of the two-variable equations and solve for another variable...

4. Plug the x and z into one of the <u>original</u> equations to find the last variable...

$$(1) + y + (3) = 6$$

 $1 + y + 3 = 6$
 $y + 4 = 6$
 $y = 2$

Solution: (1, 2, 3)