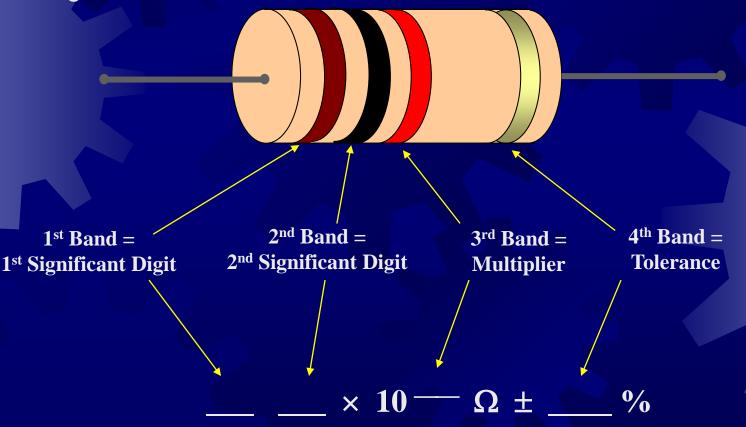
# Understanding the Resistor Color Code

Dr. Deb Hall
Electronics Engineering
Technology
Valencia Community College

#### Resistor Color Code

- Manufacturers typically use a color band system known as the resistor color code
- Within this power point, you will learn how to identify the nominal resistance and the tolerance of a resistor

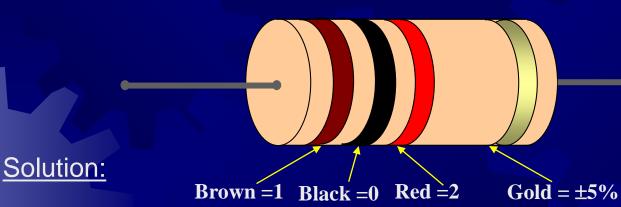

#### Resistor Color Code

- The power rating is <u>not</u> indicated in the resistor color code and must be determined by experience using the physical size of the resistor as a guide.
- For resistors with ±5% or ±10% tolerance, the color code consists of 4 color bands.

♣ For resistors with ±1% or ±2% tolerance, the color code consists of 5 bands.

#### **4-Band Resistors**

The resistor nominal value is encoded in the color code in Powers of Ten Notation. The template for determining the nominal value and tolerance of a resistor with 4 color bands is given below:




## How do we know which color corresponds to which number?

#### Answer: Using the Resistor Color Code Table

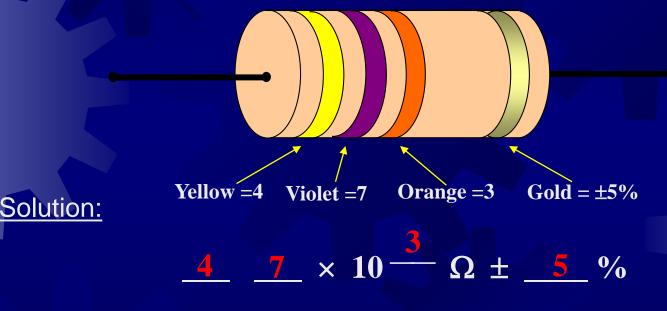
| Color   | Digit | Multiplier               | Tolerance |
|---------|-------|--------------------------|-----------|
| Black   | 0     | $10^0 = 1$               |           |
| Brown   | 1     | $10^1 = 10$              | ±1%       |
| Red     | 2     | $10^2 = 100$             | ±2%       |
| Orange  | 3     | $10^3 = 1,000$           |           |
| Yellow  | 4     | $10^4 = 10,000$          |           |
| Green   | 5     | 10 <sup>5</sup> =100,000 |           |
| Blue    | 6     | $10^6 = 1,000,000$       |           |
| Violet  | 7     | $10^7 = 10,000,000$      |           |
| Gray    | 8     | $10^8 = 100,000,000$     |           |
| White   | 9     | $10^9 = 1,000,000,000$   |           |
| Silver  |       | $10^{-2} = 0.01$         | ±10%      |
| Gold    |       | $10^{-1} = 0.1$          | ±5%       |
| No band |       |                          | ±20%      |

**Example 1.** Determine the nominal resistance value and the tolerance for the resistor shown below.



$$\frac{1}{2} \quad \frac{0}{2} \times 10^{\frac{2}{3}} \Omega \pm \frac{5}{2} \%$$

Nominal value = 
$$10 \times 10^2 \Omega$$
  
=  $1,000 \Omega$ 


Tolerance =  $\pm 5\%$ .

It is typical to express the resistance value in:  $k\Omega \text{ if the resistance} \geq 1,000\Omega$   $M\Omega \text{ if the resistance} \geq 1,000,000\Omega.$ 

- To convert from  $\Omega$  to  $k\Omega$ ,  $\Omega$  to  $M\Omega$ , or vice-versa, use the table below:
  - In the previous example we would say the resistor has a nominal value of:  $\frac{1,000\Omega}{1,000} = 1k\Omega$

| Table 2. $\Omega$ , $k\Omega$ , $M\Omega$ Conversion Table |    |                       |  |  |  |
|------------------------------------------------------------|----|-----------------------|--|--|--|
| To Convert From                                            | To | Action                |  |  |  |
| Ω                                                          | kΩ | Divide by 1,000       |  |  |  |
| Ω                                                          | ΜΩ | Divide by 1,000,000   |  |  |  |
| $\mathrm{k}\Omega$                                         | Ω  | Multiply by 1,000     |  |  |  |
| $M\Omega$                                                  | Ω  | Multiply by 1,000,000 |  |  |  |

- **Example 2.** a) Determine the nominal value and tolerance for the resistor below.
  - b) What is the minimum resistance value this resistor can actually have?
  - c) What is the maximum resistance value this resistor can actually have?



Resistor nominal value =  $47 \times 10^{3} \Omega$ =  $47,000 \Omega$ Tolerance =  $\pm 5\%$ 

#### Solution: continued

Minimum resistance value:

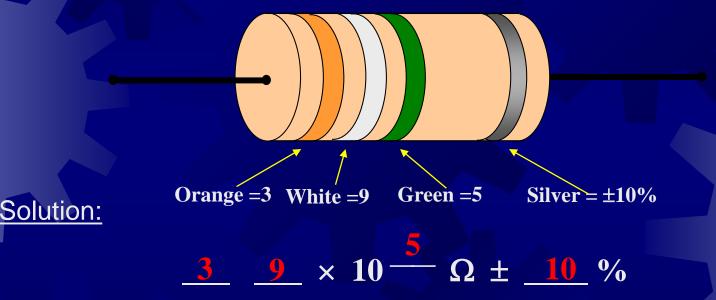
Multiply the nominal value by the tolerance and then *subtract* this from the nominal value:

$$=47k\Omega - 47k\Omega * 0.05$$

$$=47k\Omega-2.35k\Omega$$

$$=44.65k\Omega$$

Maximum resistance value:


Multiply the nominal value by the tolerance and then *add* this to the nominal value:

$$= 47k\Omega + 47k\Omega * 0.05$$

$$=47k\Omega+2.35k\Omega$$

$$=49.35k\Omega$$

- **Example 3.** a) Determine the nominal value and tolerance for the resistor below.
  - b) What is the minimum resistance value this resistor can actually have?
  - c) What is the maximum resistance value this resistor can actually have?



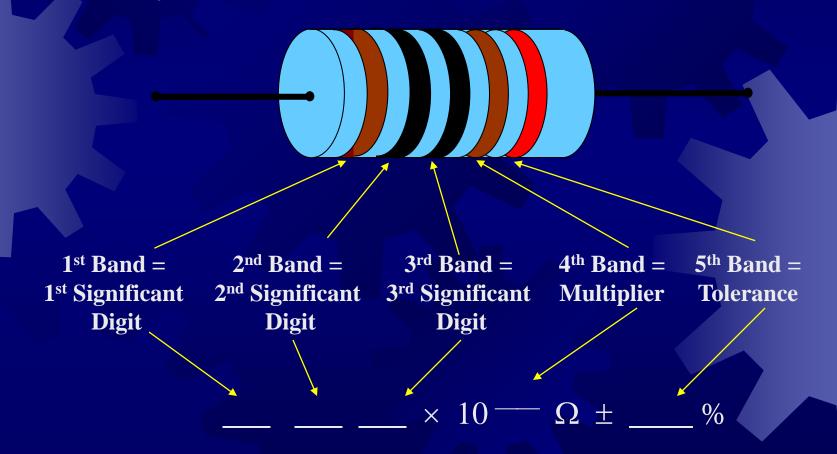
Resistor nominal value = 
$$39 \times 10^5 \Omega$$
  
=  $3,900,000 \Omega$   
Tolerance =  $\pm 10\%$ 

#### Solution: continued

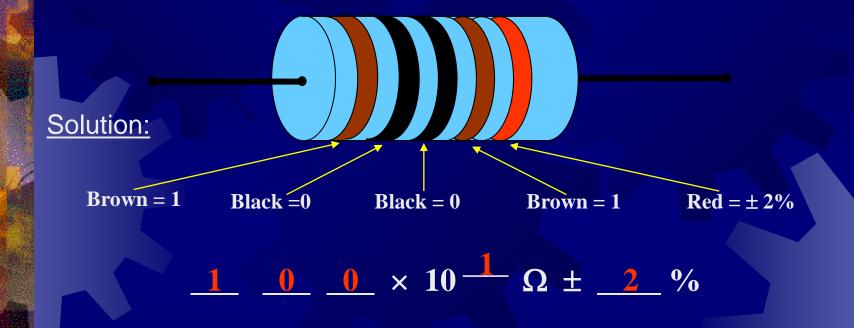
Minimum resistance value:nominal value – nominal value \* tolerance:

= 
$$3.9M\Omega - 3.9M\Omega * 0.1$$
  
=  $3.9M\Omega - 0.39M\Omega$   
=  $3.51M\Omega$ 

Maximum resistance value:nominal value + nominal value \* tolerance:


$$=3.9M\Omega+3.9M\Omega*0.1$$

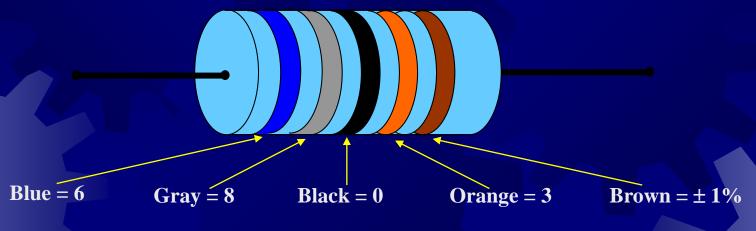
$$=3.9M\Omega+0.39M\Omega$$


$$=4.29M\Omega$$

#### **5-Band Resistors**

- For resistors with  $\pm 1\%$  or  $\pm 2\%$  tolerance, the color code consists of 5 bands.
- The template for 5-band resistors is:




**Example 4.** Determine the nominal resistance and tolerance for the resistor shown below.



Resistor nominal value = 
$$100 \times 10^{1} \Omega$$
  
=  $1,000 \Omega$   
=  $1 \text{k} \Omega$ .

Tolerance =  $\pm 2\%$ 

**Example 5.** Determine the nominal resistance and tolerance for the resistor shown below.



Solution:

$$6 \times 10^{-3} \Omega \pm 1 \%$$

Resistor nominal value =  $680 \times 10^{3} \Omega$ =  $680,000 \Omega$ =  $680 \text{k} \Omega$ .

Tolerance =  $\pm 1\%$ 

## Which side of a resistor do I read from?

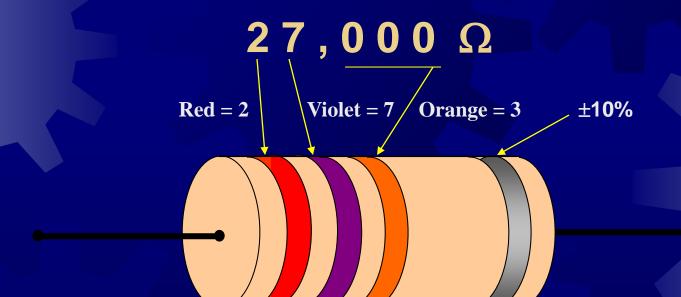
A question that often arises when reading the color code of real resistors is: how do I determine which side of a resistor do I read from?

#### Answer:

- For 4-band resistors a gold or silver band is always the last band.
- If the resistor has 5 bands or if there is no tolerance band (±20%), then the first band is the one located closest to a lead.

### Converting the Nominal Resistance and Tolerance into the Color Code

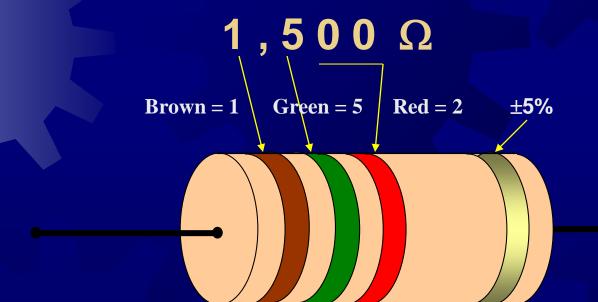
We are given the nominal value and the tolerance and we have to come up with the color code.


#### 4-Band Resistors

- 1. Resistors with  $\pm 5\%$  and  $\pm 10\%$  Tolerance will have **4-bands**
- 2. Convert nominal value to ohms  $(\Omega)$
- 3. 1st digit (from left to right) of nominal value = 1st color band
- 4. 2<sup>nd</sup> digit of nominal value = 2<sup>nd</sup> band
- 5. Number of zeros remaining = 3<sup>rd</sup> (multiplier) band
- 6. Tolerance =  $4^{th}$  band

Example 6. Specify the color code of a resistor with nominal value of  $27k\Omega$  and a tolerance of  $\pm 10\%$ .

#### **Solution:**


- 1) Since resistor Tolerance =  $\pm 10\%$  it will have <u>4-bands</u>.
- 2) Convert the nominal resistance value to  $\Omega$  from  $k\Omega$ .



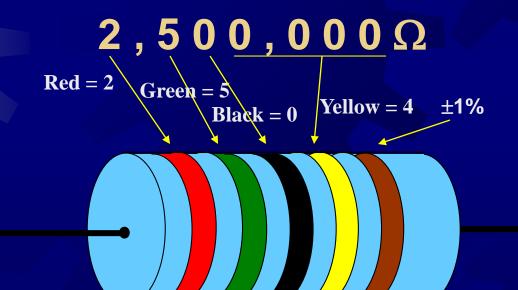
Example 7. Specify the color code of a resistor with nominal value of  $1.5k\Omega$  and a tolerance of  $\pm 5\%$ .

#### Solution:

- 1) Since resistor Tolerance =  $\pm 5\%$  it will have <u>4-bands</u>.
- 2) Convert the nominal resistance value to  $\Omega$  from  $k\Omega$ .



## Converting the Nominal Resistance and Tolerance into the Color Code


#### **5-Band Resistors**

- 1. Resistors with  $\pm 1\%$  and  $\pm 2\%$  Tolerance will have **5-bands**
- 2. Convert nominal value to ohms  $(\Omega)$
- 3. 1st digit (from left to right) of nominal value = 1st color band
- 4. 2<sup>nd</sup> digit of nominal value = 2<sup>nd</sup> band
- 5. 3<sup>rd</sup> digit of nominal value = 3<sup>rd</sup> band
- 6. Number of zeros remaining = 4<sup>th</sup> (multiplier) band
- 7. Tolerance = 5<sup>th</sup> band

Example 8. Specify the color code of a resistor with nominal value of  $2.5M\Omega$  and a tolerance of  $\pm 1\%$ .

#### **Solution:**

- 1) Since resistor Tolerance =  $\pm 1\%$  it will have <u>5-bands</u>.
- 2) Convert the nominal resistance value to  $\Omega$  from  $M\Omega$ .



# Congratulations! You now know how to work with the resistor color code

It's that simple!