Factoring Trinomials of the form $A x^{2}+B x+C$, where $A \neq 1$
Trial \& Error A.K.A. Guess \& Check

Steps to Factoring $A x^{2}+B x+C$	Example Factor: $24 \boldsymbol{x}^{2}-\mathbf{2 x} \mathbf{- 1 5}$
1. Find the factors of the first term.	$\begin{gathered} \frac{24 x^{2}}{24 x \cdot x} \\ 12 x \cdot 2 x \\ 8 x \cdot 3 x \\ 6 x \cdot 4 x \end{gathered}$
2. Find the factors of the last term.	$\frac{-15}{1 \cdot 15}$
Write out the two sets of parentheses with the factors of the first term in the first part of each parentheses and 3. the last term in the last part of each parentheses. Do not put any signs in this step.	Possible Factors
Checking all these combinations can be a daunting task, but there are a few things we can do to cut down on the amount of work. (1) Eliminate possible factors where 4. the binomials have common factors. (2) Start the checking process with the factors whose numbers are closest to one-another since these will work out the majority of the time.	Possible Factors

Remember that when factoring trinomials, all we are really doing is unFOILing. Factor the First and Last terms making sure that the factors of the First term goes into the First part of each set of parentheses and the factors of the Last term goes into the Last part of each set. Be careful to never put common factors in the same set of parentheses. Now check to see if the Outer and Inner terms work out.

4.	Check ($6 x$ 5)(4x 3) by multiplying the Inner and the Outer	
5.	Does the product of the inner and the product of the outer add to the middle term of the original trinomial? Yes, if $20 x$ was negative and if $18 x$ was positive. * Note: If this combination did not work out, then move on to the next set of $(8 x 3)(3 x 5)$.	$\frac{\left(\begin{array}{cc} 6 x-5)(4 x \\ -20 x \\ -2 x \\ \hline-28 x \end{array}\right.}{()^{3}}$
6.	The sign of the inner goes in the first set of parentheses and the sign of the outer goes in the second set of parentheses.	$\frac{\left.\right\|_{(6 x-5)(4 x} ^{(6 x)}+3}{-20 x}+\frac{18 x}{-2 x}$
7.	Double check the signs of the last factors to ensure it multiplies to the c term of -15 .	$-5 \cdot 3=-15$

Here's Another Example...

Step	Factor: $48 x^{2}+88 x-45$
1.	$\begin{gathered} \frac{48 x^{2}}{48 x \cdot x} \\ 24 x \cdot 2 x \\ 16 x \cdot 3 x \\ 12 x \cdot 4 x \\ 8 x \cdot 6 x \end{gathered}$
2.	$\begin{gathered} \frac{-45}{1 \cdot 45} \\ 3 \cdot 15 \\ 5 \cdot 9 \\ \hline \end{gathered}$
3.	$\left.\begin{array}{l}\text { Possible Factors } \\ \left(\begin{array}{ll}48 x & 1\end{array}\right)\left(\begin{array}{ll}x & 45\end{array}\right) \\ \left(\begin{array}{ll}48 x & 3\end{array}\right)\left(\begin{array}{ll}x & 15\end{array}\right) \\ \left(\begin{array}{ll}48 x & 45\end{array}\right)\left(\begin{array}{ll}x & 1\end{array}\right) \\ (48 x\end{array}\right)$
4.	
5.	
6.	
7.	...and -5 and 9 still multiplies to our c term of -45 .

