Math Connections Worksheek

MAT1033C Intermediate Algebra

Chapter 2

Equations, Inequalities and Problem Solving

Date: Name: **Section: Instructor:**

Chapter 2 Equations, Inequalities, and Problem Solving Section 2.1 Linear Equations in One Variable

Learning Objectives

- 1. Solve linear equations using properties of equality.
- 2. Solve linear equations that can be simplified by combining like terms.
- 3. Solve linear equations containing fractions or decimals.
- 4. Recognize identities and equations with no solutions.

Vocabulary

Use the choices to complete each statement.

Addition Multiplication

Equivalent Solution

Like Value

1. A(n) ______ of an equation, is a value for the variable that will make the equation true.

2. ______equations are equations that have the same solution.

3. By the _____ property of equality, 8x = 64 and $\frac{8x}{8} = \frac{64}{8}$ are equivalent equations.

4. By the property of equality, x+4=9 and x+4-4=9-4 are equivalent equations.

Objective 1

Solve each equation.

5. -8x = 24

 $6. \ \ 4.1 - 7z = 3.6$

7. 3x + 7 = 2x - 14

8. z + 14.7 = 18.2

Date:

Instructor:

Section:

Objective 2

Solve each equation.

9.
$$6(x-2)=3x+10$$

10.
$$-3(x-9) = 5x - 3(x+2)$$

11.
$$17 - 2x + 18 + 3x = -4x - 15 + 10x$$

12.
$$-10(y-2) = -15(y-2)$$

Objective 3

Solve each equation.

13.
$$\frac{1}{2}(x-4) = \frac{3}{4}x + 1$$

14.
$$\frac{x+3}{4} + \frac{x-2}{3} = \frac{1}{6}$$

Date:

Instructor:

Section:

15.
$$0.5x - 0.4 = 0.2(x - 1)$$

16.
$$0.25x + 0.80 = -0.4(x-1)$$

Objective 4

Solve each equation.

18.
$$3(x+1)+5=3x+2$$

19.
$$4(x+2) = 3(4x+2) - 2(4x-1)$$

20.
$$4(x+1)-x=8(x-1)-5x$$

Date:

Instructor:

Section:

21.
$$3(2x+3)-(-x-2)=4(3x+5)-(x+9)$$

21. _____

Concept Extensions

Solve each equation.

22.
$$7.342x = -19.0892$$

22.

23.
$$\frac{5}{12}x + 3 = \frac{7}{12}x - 11$$

23. _____

Name:	Date:
Instructor:	Section:
Section 2.2 An Introduction to Problem Solving	
 Learning Objectives Write algebraic expressions that can be simplified. Apply the steps for problem solving. 	
Objective 1	
Write the following as algebraic expressions. Then simplify.	
1. The area of a rectangle with a length of x and width of $x-2$.	1
2. The sum of four consecutive even integers.	2
3. The total amount of money (in cents) in x nickels, $x+3$ dimes, and	2x quarters. 3
4. The area of a triangle with base of $2x$ meters and height of $x + 4$ me	
5. The circumference of a circle whose diameter is $x+4$.	5
Objective 2	
Solve.	
6. A second number is five times a first number. A third number is 10 the sum of the three numbers is 415, find the numbers.	0 more than the first number. If
	6

Name: Instructor:	Date: Section:
7. The sum of three consecutive integers is 75. Find the integers.	
	7
8. One angle is 20° more than four times its supplement. Find the angle	8
9. In a recent survey, 40% of a developmental math class were females. males in all the developmental classes, how many were females?	If there were a total of 240
	9
10. Find the measures of the angles of a triangle if the measure of one ar angle and the third angle is three times the first angle.	ngle is ten less than the second
	10
11. A computer was purchased for \$594.12 including tax. If the tax rate the computer.	was 6% what was the price of
	11.
12. Two frames are needed with the same perimeter: one frame in the shape of an equilateral triangle. Each side of the triangle is 6 centim square. Find the dimensions of each frame.	

Name:	Date:
Instructor:	Section:
Concept Extensions	
Solve.	
13. How many cubic centimeters of a 30% solution should be mixed with an 8 cubic centimeters of a 60% solution?	30% solution to get 50
13	

Instructor: Section:

Section 2.3 Formulas and Problem Solving

Learning Objectives

- 1. Solve a formula for a specified variable.
- 2. Use formulas to solve problems.

Objective 1

Solve each equation for the specified variable.

1. y = mx + b; for x.

. ____

Date:

2. F = ma; for m.

2. _____

3. $F = \frac{9}{5}C + 32$; for C.

3. _____

4. 4x + 6y = 12; for x

1. _____

5. $S = \frac{n}{2}(a+L)$; for L.

5. _____

6. $y = ax^2 + bx + c$; for *b*.

ó. _____

N	OI	n	•
1.4	aı	11	v.

Date:

Instructor:

Section:

7.
$$S = B + \frac{1}{2} pl$$
; for *L*.

7. _____

Objective 2

Solve.

8. If it takes 3 hours to travel to Dallas, TX a total trip of 193 miles. How fast was the driver going?

8.

9. The surface area of a tomato sauce can is 52 square inches. If the company wants to make a can that has a diameter of 3 inches. How tall will the can be? Round to the nearest integer.

9.

10. If the area of a triangular kite is 18 square feet and its base is 4 feet, find the height of the kite.

10.

11. A banker invested \$3000 in an account that earns 6% interest that is compounded quarterly. How much interest will be earned in 3 years?

11.

Name:	Date:
Instructor:	Section:
12. The low temperature in Las Vegas, NV was 14°F.	What is the temperature in Celsius?
	12
 The perimeter of a parking lot is 200 meters. If the dimensions of the parking lot. 	length is 10 meters more than the width, find the
	13
4. Given the perimeter of an isosceles right triangle is What is the measures of the legs?	127.5 inches and the hypotenuse is 49.5 inches
	14
Concept Extensions	

Solve.

15. The formula $E = mc^2$, where E = energy, m = mass, and c = speed of light. The speed of light is 1.8×10^5 meters per second squared. If the energy produced by an apple is 2.4×10^{12} kg·m/s², what is the mass of the apple.

Name: Date:

Instructor: Section:

Section 2.4 Linear Inequalities and Problem Solving

Learning Objectives

- 1. Use interval notation.
- 2. Solve linear inequalities using the addition property of inequality.
- 3. Solve linear inequalities using the multiplication and the addition properties of inequality.
- 4. Solve problems that can be modeled by linear inequalities.

Objective 1

Graph each set on a number line and then write in interval notation.

1. $\{x \mid x > 3\}$

. _____

2. $\{x \mid x \le -4\}$

2.

3. $\{x \mid -2 < x \le 1.5\}$

3. _____

Objective 2

Solve. Write your answer in interval notation.

4. $x-8 \ge 12$

4. _____

5. x + 7 < 1

5. _____

6. x-3 > -8

6.

Date: **Section:**

Instructor:

7. $4 + x \le 13$

Objective 3

Solve. Write your answer in interval notation.

8. 2x > 42

9. $-3x - 7 \le 2$

10. $\frac{3}{4}x - 1 > 7$

11. 3(x-5) < 2(2x-1)

11. _____

12. $7x + 2 \ge 3x - 1$

 $3. \frac{5x+1}{7} - \frac{2x-6}{4} \ge -4$

	Name:	Date:
	Instructor:	Section:
	Objective 4	
	Solve. Write your answer with an inequality.	
	14. A bride has a budget of \$1500 for her reception dinner. It costs \$2 wants to serve. Use an inequality to find the number of guests the	8 per person for the meal she bride can invite to the reception.
		14
G	15. A small plane's maximum take-off weight is 2000 pounds or less. of 160 pounds each. Use an inequality to find the luggage and carg	Six passengers weigh an average go weights the plane can carry.
		15
	16. A rental car company offers two deals for their weekend special. (Plan A: \$32 per day with unlimited miles.Plan B: \$26 per day plus \$0.10 per mile.Use an inequality to find the number of daily miles for which Plan	
		16
	Concept Extension	
	17. Why is it wrong for an interval notation to be written as $(-4, -\infty)$?	?
		17
	18. Write an inequality that includes both multiplication and addition	whose solution is $\{x \mid x \ge -3\}$.
		18

Name:		Date:
Instructor:		Section:
Section 2.5 Compound Inequalities Learning Objectives 1. Find the intersection of two sets. 2. Solve compound inequalities containing and. 3. Find the union of two sets. 4. Solve compound inequalities containing or.		
Vocabulary Use the choices to complete each statement. Compound Intersection	Union	
 An inequality that contains two inequalities is called a(n) The word and means and uses the symbol 		inequality.
3. The word or means and uses the symbol		
Objective 1 If $A = \{x \mid x \text{ is an odd integer between 0 and 30}\}$, $B = \{x \mid x \text{ is an even}\}$, $C = \{2, 5, 7, 13, 18, 22, 27\}$, and $D = \{1, 6, 12, 15, 19, 23, 26, 29\}$, list the		ach set
4. $C \cap B$	4	
5. <i>D</i> ∩ <i>A</i>	5	
6. <i>C</i> ∩ <i>A</i>	6	
7. <i>C</i> ∩ <i>D</i>	7	

Date:

Instructor:

Section:

Objective 2

Solve each compound inequality. Write your answer in interval notation.

8. $x \ge 3$ and x < 10

9. $x \le 8$ and $x \ge -4$

10. $x+1 \ge 7$ and $3x-1 \ge 5$

11. $-6x \le -18$ and $x - 20 \le 10$

12. $-4 \le x + 3 < 11$

12. _____

13. $1 \le \frac{2}{3}x + 3 \le 4$

13. _____

Date:

Instructor:

Section:

Objective 3

If $A = \{x \mid x \text{ is an odd integer}\}$, $B = \{x \mid x \text{ is an even number}\}$, $C = \{2, 9, 12, 19\}$, and $D = \{3.8, 13, 18\}$, list the elements of each set.

- 14. $C \cup D$
- 15. *A*∪*C*

- 14. _____
- 15. _____

16. $B \cup D$

16. _____

Objective 4

Solve each compound inequality. Write your answer in interval notation.

17. x < 2 or x < -3

17. _____

18. $x \ge 5$ or $x \ge -5$

18. _____

19. 2x > 12 or x + 7 > 3

19.

20. 4(x-1) < 9 or $5(x+3) \le 12$

20. _____

Date:

Instructor:

Section:

21.
$$x < 1$$
 or $x > 5$

22.
$$x-7 > -4$$
 or $-2x-14 \ge 20$

Concept Extension

Solve each compound inequality. Write your answer in interval notation.

23.
$$1-3x < 4x + 5 \le x - 5$$

24.
$$4(2+3x) \le 2(x+2) \le -3(x-2)$$

Chapter 2 Section 2.1

- 1. Solution
- 2. Equivalent
- 3. Multiplication
- 4. Addition
- 5. 3
- 6. $\frac{1}{14}$ or about 0.0714
- 7. 21
- 8.3.5
- 9. $\frac{22}{3}$
- 10. $\frac{33}{5}$
- 11.10
- 12.2
- 13. 12
- 14. $\frac{1}{7}$
- 15. $\frac{2}{3}$
- 16. $-\frac{8}{13}$
- 17. 8
- 18. Ø
- 19. All real numbers
- 20. Ø
- 21. All real numbers
- 22. 2.6
- 23.84

Section 2.2

- 1. $x^2 12x$
- 2.4x+12
- 3.65x + 30 cents
- 4. $x^2 + 4x$ meters
- 5. $\pi x + 4\pi$
- 6. 45, 145, 225
- 7. 24, 25, 26
- 8. 148°, 32°
- 9. 160 females
- 10. 34, 44, 102
- 11. \$560.49
- 12. square: 18 cm; triangle: 24 cm
- 13. 20 cc of 30% solution

Section 2.3

- $1. \ \frac{y-b}{m} = x$
- $2. \ \frac{F}{a} = m$
- 3. $\frac{5}{9}(F-32)=C$
- 4. $x = 3 \frac{3}{2}y$
- 5. $\frac{25}{n} a = L$
- $6. \ \frac{y-c-ax^2}{x} = b$
- $7. \ \frac{2(S-B)}{p} = l$
- 8. 64 mph
- 9.4 inches
- 10. 9 feet
- 11. \$586.85
- 12. −10°*C* 13. 45 m by 55 m
- 14. 39 inches
- 15. 74.07 kg

Section 2.4

- 1. $(3, \infty)$
- 2. $\left(-\infty, -4\right]$
- 3. (-2,1.5]
- 4. [20,∞)
- 5. (-∞, -6)
- 6. (−5,∞)
- 7. (-∞,9]
- 8. (21,∞)
- 9. [-3,∞)
- 10. $\left(\frac{32}{3}, \infty\right)$
- 11. (−13,∞)
- 11. (-13,∞)
- 12. $\left[-\frac{3}{4},\infty\right)$
- 13. $\left[79/3,\infty\right)$
- 14. $\{x \mid x \le 53\}$
- 15. $\{x \mid x \le 1040\}$
- 16. $\{x \mid x < 120 \text{ miles}\}$
- 17. Answers may vary
- 18. Answers may vary

Section 2.5

- 1. Compound
- 2. Intersection; ∩
- 3. Union; ∪
- $4. \{2,18,22\}$
- 5. {1,15,19,23,29}
- $6. \{5,7,13,27\}$
- 7. Ø
- 8. [3,10)
- 9. [-4,8]
- 10. $[6, \infty)$
- 11. [3,30]
- 12. [-7,8)
- 13. $\left[-3, \frac{3}{2}\right]$
- 14. {2,3,8,9,12,13,18,19}
- 15. $\{x \mid x \text{ is an odd number or } x = 2 \text{ or } x = 12\}$
- 16.
- $\{x \mid x \text{ is an even number or } x = 3 \text{ or } x = 13\}$
- 17. $(-\infty, 2)$
- 18. [-5,∞)
- 19. (-4,∞)
- 20. $(-\infty, 13/4)$
- 21. $(-\infty,1)\cup(5,\infty)$
- 22. $(-\infty, -17] \cup (3, \infty)$
- 23. $\left(-\frac{4}{7}, \frac{10}{3}\right]$
- 24. $\left(-\infty, -\frac{2}{5}\right]$