Nath Connections Worksheer

MAT1033C Intermediate Algebra

Chapter 3

Graphs and Functions

Date:

Section: Instructor:

Chapter 3 Graphs and Functions Section 3.1 Graphing Equations

Learning Objectives

- 1. Plot ordered pairs.
- 2. Determine whether an ordered pair is a solution to an equation in two variables.
- 3. Graph linear equations.
- 4. Graph nonlinear equations.

Objective 1

In words, describe where the given point will be graphed. State the quadrant in which it will be.

1. (-10,16)

2. (5,-9)

2. _____

3. (7,19)

4. (-15, -18)

Objective 2

Determine whether each ordered pair is a solution of the given equation.

5. 2x + 3y = 7; (2,-1)

6. -6x + 5y = -6; $(1,0), \left(2, \frac{6}{5}\right)$

7.
$$y = 2x^3 - 4x^2 + 3x - 6$$
; $(-1, -15)$

8.
$$y = |x+2|$$
; $(-6,-4)$

Objective 3

Graph the following equations by finding and plotting ordered pair solutions.

9.
$$2x - 3y = 6$$

10.
$$y = \frac{3}{4}x - 8$$

Date:

Instructor:

Section:

11. x = 2y - 6

12. y = -3x

Date:

Instructor:

Section:

Objective 4

Graph the following equation by finding points and plotting ordered pair solutions.

13.
$$y = 2|x|$$

14.
$$y = x^2 - 4$$

Name: Date:

Instructor: Section:

15. $y = x^3 - 7$

16. y = |x+3|

Section:

Concept Extension

17. Graph $y = x^2$ and $y = (x-2)^2 + 5$ on the same rectangular coordinate system. Explain what the difference happens to be between the two graphs.

Name: Date:

Instructor: Section:

Section 3.2 Introduction to Functions

Learning Objectives

- 1. Define relation, domain, and range.
- 2. Identify functions.
- 3. Use the vertical line test for functions.
- 4. Find the domain and range of a function.
- 5. Use function notation.

Vocabulary

Use the choices to complete each statement.

7. To find the y-intercept, you would let _____ = 0

.

Objective 1

Find the domain and range of the function.

8.
$$\{(-2,4),(8,-9),(-4,6),(-2,8)\}$$

8. _____

9.
$$\{(1,7),(-7,3),(0,-6),(12,15)\}$$

9. _____

10.
$$\{(-12,16),(33,45),(-72,99),(110,-114)\}$$

Date:

Instructor:

Section:

Objective 2

Decide whether each is a function.

11. y = x + 1

11. _____

12. $\{(12,7),(-17,3),(1,-6),(12,-5)\}$

12. _____

13. $y = x^2 - 9$

13. _____

14. $x = y^4 + 5$

14. _____

Objective 3

Use the vertical line test to determine whether each graph is a function.

15.

Date:

Instructor:

Section:

16.

16. _____

17.

17. _____

Objective 4

Find the domain and range of each relation.

18.

Instructor:

Date:

Section:

19.

19. _____

Objective 5

If f(x) = 3x + 3 and $g(x) = 4x^2 - 6x + 3$, and $h(x) = 5x^2 - 7$, find the following.

20. *h*(-3)

20. _____

21. f(7)

21. _____

22. g(-5)

Date:

Instructor:

Section:

Concept Extension.

Given the function f(x) = 3x - 4.

23. Find f(a) and f(a-h).

23. _____

24. Using the function in number 23, find $\frac{f(a)-f(a-h)}{h}$.

Date:

Instructor:

Section:

Section 3.3 Graphing Linear Functions

Learning Objectives

- 1. Graph linear function
- 2. Graph linear functions by finding intercepts.
- 3. Graph vertical and horizontal lines.

Vocabulary

Use the choices to complete each statement.

Horizontal b Linear m Vertical

X

y

- 1. The equation y-8=4 is a ______ line.
- 2. A ______ function's equation can be written in the form f(x) = mx + b.
- 3. The equation x = -5 is a ______ line.
- 4. In the equation y = mx + b, the _____ represents the slope, and the _____ represents the ______ represents the _______ represents the _______ represents the _______ represents the _______ represents the ________ represents the _______ represents the _______ represents the _______ represents the ________ represents the __________ represents the ____________ represents the _________ represents the ____________ repre

Objective 1

Graph each linear function.

5.
$$f(x) = -2x + 3$$

Date:

Instructor:

Section:

 $6. \quad f(x) = -x - 4$

 $7. \quad f(x) = -\frac{1}{3}x$

8. f(x) = 0.25x - 6

Date:

Instructor:

Section:

Objective 2

Graph each linear function by finding x- and y- intercepts.

9.
$$3x - 2y = 12$$

10.
$$x - y = -6$$

11.
$$2x - 3y = -9$$

Date:

Instructor:

Section:

12.
$$-y + 3x = 9$$

Objective 3

Graph each linear equation.

13.
$$x = -1$$

Date:

Instructor:

Section:

14. y-2=-3

15. -5x = 15

16. -y = -6

Name:	Date:
Instructor:	Section:
Concept Extension	
17. Given the equation $f(x) = 7$, what is the coefficient in front of the x ?	What is the slope of this line?
1	17

•			
Name:			Date:
Instructor:			Section:
Continue 2 ATDL - Classes & - Time			
Section 3.4 The Slope of a Line	China de la companya		
Learning Objectives 1. Find the slope of a line given 2. Find the slope of a line given 3. Interpret the slope-intercept f 4. Find the slopes of horizontal 5. Compare the slopes of paralle	the equation of a line. form in an application and vertical lines.		
Vocabulary			
Use the choices to complete each st Different	tatement. Equal	Perpendicular	
Slope 0	Slope-Intercept	Undefined	
	-		
1. Two parallel lines will have		intercepts.	
2. The slope of a vertical line is			
3. The rate of change in which a lin			
4. If the slopes of two lines are opp	-		,
5. The form $y = mx + b$ is called _	for	m.	
6. The slope of the line $y = 1$ is	•		
Objective 1			
Find the slope of the line that runs	through the given points.		
7. (-2,-6), (4,-4)			
7. (2, 3), (1, 1)		7	
8. (-1,0), (-4,-9)			
		8	

9. (7,-2), (7,9)

Date:

Instructor:

Section:

Objective 2

Find the slope of each line.

10.
$$y = \frac{1}{5}x - 9$$

10. _____

11.
$$4x - 7y = 10$$

11. _____

12.
$$f(x) = -5x$$

12.

Objective 3

Solve.

- 13. With wireless Internet (WiFi) gaining popularity, the number of public wireless Internet access points (in thousands) is projected to grow from 2003 to 2008 according to the equation -66x + 2y = 84 where x is the number of years after 2003.
 - a. Find the slope and *y*-intercept of the linear equation.
 - b. What does the slope mean in this context?
 - c. What does the y-intercept mean in this context?

13a. _____

13b. _____

- 14. The cost C, in dollars, of renting a convertible for a day is given by the equation C(x) = 0.25x + 64, where x is the number of miles driven.
 - a. Find the slope and y-intercept of the linear equation.
 - b. What does the slope mean in this context.
 - c. What does the *y*-intercept mean in this context.

14a.

14b. _____

14c. _____

Objective 4

Find the slope of each line.

15.
$$x = -5$$

15. _____

16.
$$y = 13$$

16. _____

17.
$$-3x = 12$$

17. _____

18.
$$y + 6 = -12$$

Date:

Instructor:

Section:

Objective 5

Determine whether the lines are parallel, perpendicular, or neither.

19.

$$f\left(x\right) = -3x + 6$$

g(x) = 3x + 5

20.

$$y = \frac{1}{3}x - 4$$
$$-x + 3y = 7$$

21.

$$2x + 3y = 9$$
$$3x - 2y = 9$$

22.	Find the	slope of	of the l	ine that	is per	rpendicula	ar to	4x-7	7y = 1	4.

23. Find the slope of the line that is parallel to 12x - 15y = 18.

10	
19.	

20. _____

21. _____

Name:
Instructor:

Section:

Date:

Section 3.5 Equations of Lines

Learning Objectives

- 1. Use the slope-intercept form to write the equation of a line.
- 2. Graph a line using its slope and y-intercept.
- 3. Use the point-slope form to write the equation of a line.
- 4. Write equations of vertical and horizontal lines.
- 5. Find equations of parallel and perpendicular lines.

Objective 1

Use the slope-intercept form of the linear equation to write the equation of each line with the given slope and *y*-intercept.

1. Slope = -2; y-intercept (0, -4)

1.

2. Slope = $\frac{2}{3}$; y-intercept (0,6)

2. _____

3. Slope = $-\frac{3}{5}$; y-intercept $\left(0, -\frac{7}{9}\right)$

Instructor:

Date:

Section:

Objective 2

Graph each linear equation using slope-intercept form.

4.
$$y = \frac{2}{5}x - 8$$

5.
$$4x - 3y = 8$$

6.
$$-3x - 6y = 12$$

Date:

Instructor:

Section:

7. x = 3y - 9

Objective 3

Find the equation of a line with the given slope and containing the given point. Write the equation in slope-intercept form.

Œ,

8. Slope = 3; through (1,2)

8. _____

9. Slope = $\frac{1}{4}$; through (8,-3)

9.

10. Slope = $-\frac{2}{5}$; through (3,-4)

Date:

Instructor:

Section:

11. Slope = -7; through $\left(\frac{1}{2}, \frac{3}{5}\right)$

11. _____

Objective 4

Find the equation of each line.

12. Slope = 0; through (-1, -5)

12. _____

13. Vertical line; through (2,6)

13. _____

14. Undefined slope; through $\left(-5, -\frac{2}{3}\right)$

14. _____

15. Horizontal line; through $(\frac{2}{5}, -\frac{1}{3})$

15. _____

Objective 5

Find the equation of each line. Write the equation using function notation.

16. Through (2,-5); perpendicular to 3y = x - 6

Date:

Instructor:

Section:

17. Through (1,-3); parallel to x-3y=7

17. _____

18. Through (3,-5); parallel to y=-3

19. Through (0,-23); perpendicular to 2x-3y=8

Concept Extension

Find the slope of the line through the following points. Use function notation to write the equation.

21.
$$(\frac{3}{4}, -\frac{2}{5}), (-\frac{1}{5}, \frac{1}{4})$$

Section 3.7 Graphing Linear Inequalities

Learning Objectives

- 1. Graph linear inequalities.
- 2. Graph the intersection or union of two linear inequalities.

Objective 1

Graph each inequality.

1. x > 4

2.
$$y \le \frac{1}{2}x - 5$$

82

Date:

Instructor:

Section:

3. 3x + y > 6

4. 2x-4y<16

Objective 2

5. Graph the intersection of $x + y \le 1$ and $y \le -1$

Section:

6. Graph the union of x + y > 4 and x > 2

7. Graph the union of $2x + 3y \le 6$ and y < 2

8. Graph the intersection of x - y < -5 and $x \ge -3$.

Instructor:

Date:

Section:

Concept Extension

9. Graph the intersection of the following equations:

$$\begin{cases} x - y > 2 \\ y < 2x \\ y > 4 \end{cases}$$

10. Graph the union of the following equations:

$$\begin{cases} x + y < 5 \\ y > 2x - 1 \\ x < -2 \end{cases}$$

Name: Date:
Instructor: Section:

Chapter 3 Vocabulary

Chapter 3 Vocabulary					
Vocabulary Word	Definition	Example			
Rectangular coordinate system	A plane that contains a vertical (y) and horizontal (x) axes. The intersection of the axes is called the origin.	10 T U U U U U U U U U U U U U U U U U U			
Solution	An ordered pair that makes the equation true.	y = 3x + 2 Solution $(-2, -4)$ -4 = 3(-2) + 2			
Linear Equation in Two Variables	An equation that can be written in standard form: $Ax + By = C$	5x - 4y = 12 $y = 2x - 8$			
Intercept	A point on the graph where it hits a specific axis.	y = 2x + 8 Hits the y axis at 8.			
Slope (m)	Rate of change. Steepness of the graph.	$\frac{y_2 - y_1}{x_2 - x_1}$			
Slope-Intercept Form.	y = mx + b where m is the slope and b is the y-intercept.	y = 4x - 9			
Point-Slope Form	$y-y_1=m(x-x_1)$ where m is the slope and the point (x_1, y_1)	Given m = 2 and (1,3) then $y-3=2(x-1)$			
Relation	Set of ordered pairs. A function is a special relation that the x values do not repeat. For every x-value there is only one y-value.	$\{(1,2)(2,3)(4,5)\}$ Is a function as well.			
Domain	Set of all the x-values in a relation.	For the relation above: D={1, 2, 4}			
Range	Set of all the y-values in a relation.	For the relation above: R= {2, 3, 5}			
f(x)	Function notation. A function of x.	f(x) = 3x + 2			

Date:

Instructor:

Section:

Linear function	A function that can be written as $f(x) = mx + b$.	f(x) = 3x - 6		
Vertical Shifts	g(x) = f(x) + k; If k positive, graph shifts up; if k is negative, graph shifts down.	$f(x) = x^2 + 3$; graph is three units higher than $f(x) = x^2$		
Horizontal Shifts	g(x) = f(x - h); If h is positive, graph shifts to the right; if h is negative, graph shifts to the left.	f(x) = x-4 ; graph is 4 units to the right of $f(x) = x $		
Linear Inequality in Two Variables	$f(x) < ax + b$ $f(x) \ge ax + b$	f(x) > 2x - 6		

Answers

Chapter 3 Section 3.1

- 1. 10 to the left, 16 up; II
 2. 5 to the right, 9 down; IV
 3. 7 to the right, 19 up; I
 4. 15 to the left, 18 down; III

- 5. No
- 6. Yes
- 7. No
- 8. No

9.

10.

11.

12.

13.

14.

15.

17. The second graph shifts 2 units to the right, and 5 units up.

Section 3.2

- 1. Function
- 2. Domain
- 3. y
- 4. Vertical
- 5. Relation
- 6. Range
- 7. *x*
- 8. $D = \{-2, -4, 8\}; R = \{4, -9, 6, 8\}$
- 9. $D = \{1, -7, 0, 12\}; R = \{7, 3, -6, 15\}$
- 10. D = {-12, 33, -72, 110}; R = {16, 45, 99, -114}
- 11. Yes
- 12. No
- 13. Yes
- 14. No
- 15. Yes
- 16. Yes
- 17. No
- 18. $D = (-\infty, \infty)$; R = 4
- 19. D= $(-\infty, \infty)$; R = $(-\infty, \infty)$
- 20. 38
- 21. 24
- 22. 133
- 23. 3a-4; 3a-3h-4
- 24. 3

Section 3.3

- 1. Horizontal
- 2. Linear
- 3. Vertical
- 4. m; b; y
- 5.

6.

7.

8.

10.

11.

12.

13.

14.

15.

16.

17. coefficient = 0; slope = 0

Section 3.4

- Equal; Different
 Undefined
 Slope
 Perpendicular

- 5. Slope-Intercept
- 6. 0
- 8. 3

9. undefined

10.
$$\frac{1}{5}$$

13a. m = 33; y-intercept (0, 42)

13b. The number of WiFi hotspots increase by

33 thousand every year.

13c. There were 42 thousand hotspots in 2003.

14a. slope = 0.25; y-intercept: (0, 64)

14b. It cost \$0.25 per mile to rent the car.

14c. The daily rate to rent the car is \$64

15. undefined

16. 0

17. undefined

18. 0

19. Neither

20. Parallel

21. Perpendicular

22.
$$-\frac{7}{4}$$

23.
$$\frac{4}{5}$$

Section 3.5

1.
$$y = -2x - 4$$

2.
$$y = \frac{2}{3}x + 6$$

3.
$$y = -\frac{3}{5}x - \frac{7}{9}$$

4.

5.

6.

8.
$$y = 3x - 1$$

9.
$$y = \frac{1}{4}x - 5$$

10.
$$y = -\frac{2}{5}x - \frac{14}{5}$$

11.
$$y = -7x + \frac{41}{10}$$

12.
$$y = -5$$

13.
$$x = 2$$

14.
$$x = -5$$

15.
$$y = -\frac{1}{3}$$

16.
$$f(x) = -3x + 1$$

17.
$$f(x) = \frac{1}{3}x - \frac{10}{3}$$

18. $f(x) = -5$

18.
$$f(x) = -5$$

19.
$$f(x) = -\frac{3}{2}x - 23$$

20.
$$f(x) = \frac{1}{3}x - 7$$

20.
$$f(x) = \frac{1}{3}x - 7$$

21. $f(x) = -\frac{13}{19}x + \frac{43}{380}$

Section 3.7

2.

3.

4.

5.

7.

8.

9.

