Nath Connections Worksheek

MAT1033C Intermediate Algebra

Chapter 5

Exponents, Polynomials, and Polynomial Functions

Date: Section:

Chapter 5 Exponents, Polynomials, and Polynomial Functions Section 5.1 Exponents and Scientific Notation

Learning Objectives

- 1. Use the product rule for exponents.
- 2. Evaluate expressions raised to the 0 power.
- 3. Use quotient rule for exponents.
- 4. Evaluate expressions raised to the *n*th power.
- 5. Convert between scientific notation and standard notation.

Objective 1

Use the product rule to simplify each expression.

1.
$$(3x^3y^4)(-5x^2y^3)$$

$$\bigcirc$$
 2. $(-4x^3p^2)(4y^3x^3)$

3.
$$t^2 \cdot t \cdot t^6 \cdot (3t^4)$$

Objective 2

Evaluate each expression.

4.
$$-6^{\circ}$$

5.
$$-5x^0$$

$$6. \left(5x^2z\right)^0$$

Objective 3

Use the quotient rule to simplify.

$$7. \quad \frac{t^5}{2t}$$

$$8. \ \frac{5a^2b^4}{ab^2}$$

$$9. \ \frac{48x^7y^9}{32x^4y^7}$$

Objective 4

Simplify and write using positive exponents only.

10.
$$6^{-2}$$

11.
$$\frac{a^2bc^3}{a^4b^5}$$

12.
$$\frac{1}{7^{-3}}$$

$$\Im 14. \ \frac{x^{3t-1}}{x'}$$

15.
$$\frac{15az^3\left(4z^{-5}\right)}{30a^{-3}z^4}$$

Write each number in scientific notation.

Name:		
Instructor:		

Date: Section:

Write each number in standard notation.

18.
$$3.26 \times 10^9$$

19.
$$2.3 \times 10^{-13}$$

Concept Extension

20. Prove the power of zero rule. (Hint: Use quotient rule)

Section 5.2 More Work with Exponents and Scientific Notation

Learning Objectives

- 1. Use the power rule for exponents.
- 2. Use exponent rules and definitions to simplify exponential expressions.
- 3. Compute, using scientific notation.

Objective 1

Simplify. Write each answer using positive exponents only.

1.
$$\left(a^2b^{-3}c^{-4}\right)^{-3}$$

1.

2.
$$(6^2)^{-2}$$

2. _____

3.
$$\left(-2x^2y^0z^{-4}\right)^6$$

3. _____

$$4. \left(\frac{2t^{-3}}{s^4}\right)^3$$

4. _____

Simplify. Write each answer using positive exponents.

$$5. \left(\frac{2a^2y^{-2}}{y^{-3}}\right)^{-3}$$

$$6. \ \frac{\left(3s^2t^4\right)^3}{15s^4t^8}$$

8.
$$(n^{x+4})^2$$

$$9. \ \frac{\left(2x^{2n+1}\right)^5}{x^{n+2}}$$

Perform each indicated operation. Write each answer in scientific notation.

10.
$$(5 \times 10^{11})(2.9 \times 10^{-3})$$

11.
$$\frac{3.6 \times 10^5}{0.4 \times 10^{-6}}$$

12.
$$\frac{66,000 \times 0.001}{0.002 \times 0.003}$$

Name: Instructor:	Date: Section:
Concept Extension	
13. Is there such a number that if raised to the exponent of 1 is equivalently the power of -1 ?	ent to that number being raised to
	13
14. Is there such a number that if raised to the power of -4 , the result with	ill be negative?
	14

Name: Instructor:		Date: Section:
Section 5.3 Polynomials and Polynomial Functions		
a polynomial.2. Define polynomia3. Review combinin4. Add polynomials.5. Subtract polynom	of function. g like terms.	nial, trinomial, and the degree of a term and of edgree of the polynomial.
Vocabulary Use the choices to com Binomial Like Term Variables	plete each statement. Coefficient Monomial Trinomial	Degree Polynomial Unlike
1. A polynomial with	three terms is called a	and the second s
non-negative integ 3. A polynomial with 4. The degree of the polynomial with 5. If two terms have terms. 6. A single term polynomial factor	ger and a is a real number. two terms is called a olynomial is the largest identical variables raised to identical comial is called a or of each term is its	of the terms in that polynomial. al powers, they are said to be
Objective 1		
Find the degree of each	ı term.	
9. $35x^{12}$		9.
106		10

11.
$$15x^{10}y^{12}z^{13}$$

Find the degree of each polynomial and indicate whether the polynomial is a monomial, binomial, trinomial, or none of these.

12.
$$4x^2 + 2x - 1$$

13.
$$5x^2y^2 - 4xy^2 + 6x^2y + 7y^2$$

14.
$$15 - x^2$$

Objective 2

If $P(x) = x^2 + x + 1$ and $Q(x) = 5x^2 + 1$, find the following.

16.
$$P\left(\frac{1}{3}\right)$$

Date: **Section:**

Objective 3

Simplify by combining like terms.

$$37. 7x^2 - 2xy + 5y^2 - x^2 + xy + 11y^2$$

18.
$$t^2 + 2st - 2t^2 + 5st + s^2$$

Objective 4

Perform the indicated operation.

19.
$$(3y^2 + 6y - 12) + (5y^2 - 8y + 7)$$

20.
$$(4x^2 + 3xy - y^2) + (x^2 - 7xy + 5y^2)$$

21.
$$6t^2 + 5t - 10 + (3t^2 - 10t + 15)$$

Perform the indicated operation.

22. $(9x^3 - 2x^2 + 4x - 7) - (2x^3 - 6x^2 - 4x + 3)$

22. _____

- 23. Subtract (x^2-6) from the sum of $(3x^2-5x+6)$ and $(x^2-6x-10)$.
 - 23. _____

 $-5x^2 + 3x - 10$ $-\left(3x^2 - 15x + 10\right)$

Concept Extension

For the given P(x) and Q(x) from # 15 and 16, find the following.

25. 2P(x) - 3Q(x)

25. _____

26. -3P(x) + 5Q(x)

Date: **Section:**

Section 5.4 Multiplying Polynomials

Learning Objectives

- 1. Multiply two polynomials.
- 2. Multiply two binomials.
- 3. Square binomials.
- 4. Multiply the sum and difference of two terms.
- 5. Multiply three or more polynomials.
- 6. Evaluate polynomial functions.

Objective 1

Multiply.

1. $(2x^3)(-4x^2+7)$

2. $(x+1)(x^2-3x+2)$

3. $(x^2-2x+1)(x^2+3x+4)$

Objective 2

Multiply the binomials.

 \Im 4. (3x-1)(x+3)

5.
$$(3a+b)(2a-5b)$$

6.
$$(2x-9)(x+3)$$

7.
$$(-x-1)(-5x+6)$$

Objective 3

Multiply, using special product methods.

8.
$$(3x+5)^2$$

9.
$$(4x^2-1)^2$$

10.
$$(5x^2-7)^2$$

Multiply, using special product rules.

11.
$$(5x-3)(5x+3)$$

12.
$$(11x+8)(11x-8)$$

$$[(2s-3)-1][(2s-3)+1]$$

Objective 5

Multiply.

$$(x+y)(x-y)(x^2-y^2)$$

15.
$$(y+3)(y-2)(y+1)$$

16.
$$(r+1)^3$$

17.
$$(y-2)^4$$

If $f(x) = 3x^2 - 4x + 2$, find the following.

18.
$$f(-2)$$

19.
$$f(0)$$

20.
$$f(a)$$

Name:
Instructor:

Date: Section:

Concept Extension

21. Using the function from # 18 – 20, find $\frac{f(a+h)-f(a)}{h}$.

21.

Section 5.5 The Greatest Common Factor and Factoring by Grouping

Learning Objectives

- 1. Identify the GCF.
- 2. Factor out the GCF of a polynomial's terms.
- 3. Factor polynomials by grouping.

Objective 1

Find the GCF of each list of monomials.

1.
$$10x^2yz^3$$
, $20x^2z^5$, $45xz^3$

2.
$$24a^6b^4c$$
, $36a^4b^6c^3$, $48a^3b^7c$

3.
$$16x^4y^7z^2$$
, $-24x^3y^5z^4$, $18xy^6z^3$

Objective 2

Factor out the GCF in each polynomial.

4.
$$15x - 25y$$

6.
$$18a^4b^3 - 36a^3b^4 + 12a^2b^2$$

7.
$$2x(x-7)-3(x-7)$$

8.
$$4x(x-1)-8(x-1)$$

Factor by grouping.

$$9. 12xy - 8x - 3y + 2$$

10.
$$6x - 4y + 15x^2 - 10xy$$

11.
$$3-9b+2a-6ab$$

Name:
Instructor:

Date: Section:

Concept Extension

Factor out the GCF of the following.

12.
$$4x^{6n} - 8x^{4n} + 16x^{2n}$$

Section 5.6 Factoring Trinomials

Learning Objectives

- 1. Factor trinomials of the form $x^2 + bx + c$.
- 2. Factor trinomials of the form $ax^2 + bx + c$.
 - a. Method 1 Trial and Check
 - b. Method 2 Grouping
- 3. Factor by substitution.

Objective 1

Factor each trinomial.

1.
$$x^2 + 2x - 8$$

2.
$$x^2 - 8x + 15$$

3.
$$x^2 + 4x - 12$$

4.
$$x^2 + x - 20$$

5.
$$3x^2 - 18x + 24$$

Factor each trinomial.

6.
$$2x^2 - 3x - 2$$

7.
$$25x^2 + 10x + 1$$

8.
$$9x^2 + 18x + 8$$

9.
$$4x^2 + 8x + 3$$

10.
$$8a^2 - 2a - 1$$

Use substitution to factor each polynomial completely.

11.
$$(x-4)^2 + 3(x-4) - 18$$

12.
$$3x^4 - 3x^2 - 6$$

13.
$$x^4 - 7x^2 + 10$$

14.
$$10x^4 + 13x^2 - 3$$

15.
$$16x^4 + 24x^2 + 9$$

Name:	
Instructor	

Date: Section:

Concept Extension

16. Find all positive values of b such that $x^2 + bx + 8$ is factorable.

16. _____

17. Find all the negative values of b such that $x^2+bx-12$ is factorable.

17. _____

Date: Section:

Section 5.7 Factoring by Special Products

Learning Objectives

- 1. Factor a perfect square trinomial.
- 2. Factor the difference of two squares.
- 3. Factor the sum or difference of two cubes.

Objective 1

1.
$$x^2 + 8x + 16$$

2.
$$4x^2 + 20x + 25$$

$$3. 4x^2 - 12x + 9$$

4.
$$-72x^3 - 120x^2 - 50x$$

Objective 2

Factor the following.

5.
$$x^2 - 81$$

Date: Section:

6.
$$25t^2 - 36n^2$$

7.
$$-32x^2 + 50y^2$$

8.
$$16x^2 - 49y^2$$

Objective 3

Factor the following.

$$9. z^3 - 1$$

10.
$$8x^3 + 343$$

11.
$$3x^3 + 24$$

13.
$$a^6 - b^9$$

Concept Extension

Factor completely.

14.
$$x^8 - 1$$

15.
$$4x^{2n} - 49$$

Date: Section:

Section 5.8 Solving Equations by Factoring and Problem Solving

Learning Objectives

- 1. Solve polynomial equations by factoring.
- 2. Solve problems that can be modeled by polynomial equations.
- 3. Find the x-intercepts of a polynomial function.

Objective 1

Solve each equation.

1.
$$(x+5)(x-7)=0$$

2.
$$2x(x+1)(x-8)=0$$

3.
$$3x^2 - 3x - 6 = 0$$

4.
$$2x^3 + 8x = 42x$$

$$5. \ 4x^2 - 20x + 16 = 0$$

$$6. \ x^3 - x = 2x^2 - 2$$

8.
$$16x^2 + 56x = -49$$

9.
$$25y^2 - 36 = 0$$

Solve.

10. Determine whether any three consecutive integers represent the lengths of the sides of a right triangle.

10. _____

11. The sum of two numbers is 8. The sum of their squares is 34. Find the two numbers.

11. _____

12. An object falling off a cliff follows the path given by the equation $h(t) = -16t^2 + 4900$, where h(t) is the height at a given time, t, in seconds. At what time will the object hit the ground.

12.

13. If one number is 6 greater than another number, and their product is 91, find the two numbers.

13._____

Objective 4

Find the x-intercepts of the following functions.

14.
$$y = x^2 - 5x + 6$$

14. _____

15.
$$y = 6x^2 + x - 2$$

16.
$$y = 9x^2 - 16$$

17.
$$y = 4x^2 + 20x + 25$$

Concept Extension

Solve.

18.
$$(x^2 - 6x + 8)(10x^2 + 13x + 3) = 0$$

Chapter 5 Vocabulary

Vocabulary Word	Definition	Example
Product Rule	$x^m \bullet x^n = x^{m+n}$	$(a^2b)(a^3b^2) = a^5b^3$
Quotient Rule	$\frac{x^m}{x^n} = x^{m-n}$	$\frac{x^5}{x^3} = x^2$
Power Rule	$\left(x^{m}\right)^{n}=x^{m+n}$	$\left(3^4\right)^5 = 3^{20}$
Zero Exponent	Anything to the zero power = 1	$5^0 = 1$
Polynomial	A finite sum of terms where each term is in the form ax^n ; n must be a non negative number.	$4x^2 - 3x + 7$
Monomial	One term polynomial	5 <i>x</i>
Binomial	Two term polynomial	2x-7
Trinomial	A three term polynomial	$4x^2 - 3x + 5$

Chapter 5 Section 5.1

1. $-15x^5y^7$

2.
$$-16x^6p^2y^3$$

10. 1.45×10^9

11. 9×10^{11}

12. 1.1×10^7

14. No

Section 5.3

1. Trinomial

Binomial
 Degree

6. Monomial

7. Coefficient

12. 2; trinomial

13. 4; none of these 14. 2; binomial

17. $6x^2 - xy + 16y^2$

18. $s^2 + 7st - t^2$

19. $8y^2 - 2y - 5$

21. $9t^2 - 5t + 5$

23. $3x^2 - 11x + 2$

24. $-8x^2 + 18x - 20$

25. $-13x^2 + 2x - 1$

26. $22x^2 - 3x - 8$

Section 5.4

 $1 -8x^5 + 14x^3$

4. $3x^2 + 8x - 3$

2. $x^3 - 2x^2 - x + 2$

5. $6a^2 - 13ab - 5b^2$

6. $2x^2 - 3x - 27$

3. $x^4 + x^3 - x^2 - 5x + 4$

20. $5x^2 - 4xy + 4y^2$

22. $7x^3 + 4x^2 + 8x - 10$

8. Variables

5. Like

9. 12 10. 0

11. 35

15. 501

16. 13/9

2. Polynomial

13. - 1 and + 1

3.
$$3t^{13}$$

7.
$$\frac{t^4}{2}$$

8.
$$5ab^2$$

$$9. \quad \frac{3x^3y^2}{2}$$

10.
$$\frac{1}{36}$$

11.
$$\frac{c^3}{a^2b^4}$$

13.
$$\frac{7}{x^3z^5}$$

14.
$$x^{2t-1}$$

15.
$$\frac{2a^4}{z^6}$$

16.
$$6.4 \times 10^7$$

17.
$$4.56 \times 10^{-7}$$

20. Answer will vary

Section 5.2

1.
$$\frac{b^9c^{12}}{a^6}$$

$$2. \quad \frac{1}{6^4} = \frac{1}{1296}$$

$$3. \quad \frac{64x^{12}}{z^{24}}$$

4.
$$\frac{8}{t^9 s^{12}}$$

$$5. \ \frac{1}{8a^6y^3}$$

6.
$$\frac{9s^2t^4}{5}$$

7.
$$\frac{1}{y^{15}}$$

8.
$$n^{2x+8}$$

9.
$$32x^{9n+3}$$

Answers

7.
$$5x^2 - x - 6$$

8.
$$9x^2 + 30x + 25$$

9.
$$16x^4 - 8x^2 + 1$$

10.
$$25x^4 - 70x^2 + 49$$

11.
$$25x^2 - 9$$

12.
$$121x^2 - 64$$

13.
$$4s^2 - 12s + 8$$

14.
$$x^4 - 2x^2y^2 + y^4$$

15.
$$y^3 + 2y^2 - 5y - 6$$

16.
$$r^3 + 3r^2 + 3r + 1$$

17.
$$y^4 - 8y^3 + 24y^2 - 32y + 16$$

20.
$$3a^2 - 4a + 2$$

21.
$$6a + 3h - 4$$

Section 5.5

1.
$$5xz^3$$

2.
$$12a^3b^4c$$

3.
$$2xy^5z^2$$

4.
$$5(3x-5y)$$

5.
$$2x^3(3x^2-4x+1)$$

6.
$$6a^2b^2(3a^2b-6ab^2+2)$$

7.
$$(x-7)(2x-3)$$

8.
$$4(x-1)(x-2)$$

9.
$$(3y-2)(4x-1)$$

10.
$$(3x-2y)(2+5x)$$

11.
$$(1-3b)(3+2a)$$

12.
$$4x^{2n}(x^{4n}-2x^{2n}+4)$$

Section 5.6

1.
$$(x+4)(x-2)$$

2.
$$(x-3)(x-5)$$

3.
$$(x+6)(x-2)$$

4.
$$(x+5)(x-4)$$

5.
$$3(x-4)(x-2)$$

6.
$$(2x+1)(x-2)$$

7.
$$(5x+1)^2$$

8.
$$(3x+2)(3x+4)$$

9.
$$(2x+3)(2x+1)$$

10.
$$(4a+1)(2a-1)$$

11.
$$(x+2)(x-7)$$

12.
$$3(x^2-2)(x^2+1)$$

13.
$$(x^2-5)(x^2-2)$$

14.
$$(5x-1)(2x+3)$$

15.
$$(4x^2+3)^2$$

17.
$$-11$$
, -4 , and -1

Section 5.7

1.
$$(x+4)^2$$

2.
$$(2x+5)^2$$

3.
$$(2x-3)^2$$

4.
$$-2x(6x+5)^2$$

5.
$$(x+9)(x-9)$$

6.
$$(5t-6n)(5t+6n)$$

7.
$$-2(4x-5y)(4x+5y)$$

8.
$$(4x+7y)(4x-7y)$$

9.
$$(z-1)(z^2+z+1)$$

10.
$$(2x+7)(4x^2-14x+49)$$

11.
$$3(x+2)(x^2-2x+4)$$

12.
$$3y^2(x^2+3)(x^4-3x^2+9)$$

13.
$$(a^2-b^3)(a^4+a^2b^3+b^6)$$

14.
$$(x^4+1)(x^2+1)(x+1)(x-1)$$

15.
$$(2x^n-7)(2x^n+7)$$

Section 5.8

1.
$$-5$$
 and 7

2. 0, -1, and 8

3. 2 and -1

4. 0, 3, and -7

5. 4 and 1

6. - 1, 1, and 2

7. $\frac{3}{5}$ and -1

8.
$$-\frac{7}{4}$$

9.
$$\pm \frac{6}{5}$$

10. 3, 4, and 5

11. 3 and 5

12. 17.5 seconds

13. 7 and 13 or -13 and -7

14. 3 and 2

15. $\frac{1}{2}$ and $-\frac{2}{3}$

16.
$$\pm \frac{4}{3}$$

17.
$$-\frac{5}{2}$$

18. 4, 2, -1, and $-\frac{3}{10}$