

MAT 1033C Final Exam Review

BY:

Math Connections/Hands-On Math

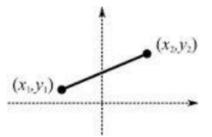
Math Connections

Table of Contents

- Useful Formulas
- Rational Expressions/Equations
 - #1, 2, 3, 4, 5, 6, 7, 8, 9, 47, 48, 49
- Radicals and Rational Exponents/Equations
 - #<u>10</u>, <u>11</u>, <u>12</u>, <u>13</u>, <u>14</u>, <u>15</u>, <u>16</u>, <u>17</u>, <u>18</u>, <u>19</u>
- Complex Numbers
 - #<u>20</u>, <u>21</u>, <u>22</u>, <u>23</u>
- Quadratic Equations/Applications
 - #<u>24</u>, <u>25</u>, <u>26</u>, <u>27</u>, <u>28</u>, <u>29</u>, <u>30</u>, <u>31</u>, <u>32</u>
- Graphing
 - #<u>33</u>, <u>34</u>, <u>35</u>, <u>36</u>, <u>37</u>, <u>38</u>, <u>39</u>, <u>40</u>, <u>41</u>
- Equations of Lines/Slope
 - **#42, 43**
- Inequalities (Solving/Graphing)
 - #<u>44</u>, <u>50</u>, <u>51</u>, <u>52</u>, <u>53</u>, <u>54</u>, <u>55</u>
- Systems of Equations/Applications
 - **#45, 46**
- Other Topics to Study
- Study and Test Taking Tips

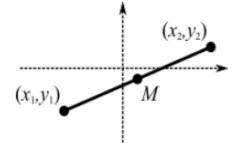
Helpful Formulas to Remember...

Vertex

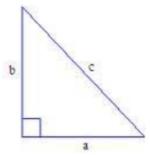

$$(\frac{-b}{2a}, f(\frac{-b}{2a}))$$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$


Distance Formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$


Midpoint Formula

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

Slope/Linear Equations

$$\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope-intercept form: y = mx + bFunction Notation: f(x) = mx + b

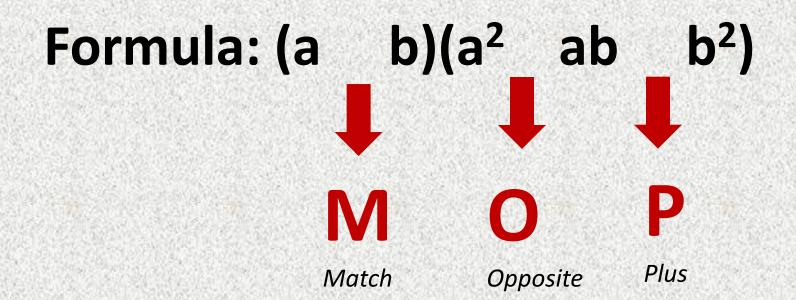
Point-slope form: $y - y_1 = m(x - x_1)$

Parallel Lines: Same Slope

Perpendicular Lines: opposite, reciprocal slopes

Work Formulas

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{x} \qquad x = \frac{ab}{a+b}$$


Set-Up:
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{x}$$
 (3 people)

$$\mathbf{x} = \frac{abc}{ab + ac + bc}$$

Formula:

Factor: $a^3 + b^3 OR a^3 - b^3$

a and b are cube roots!

$$x^3 - 8$$

$$\sqrt[3]{x^3} = x \rightarrow a$$

$$\sqrt[3]{8} = 2 \rightarrow b$$

(a b)(a·a ab b·b)

$$(x - 2)(x·x + 2x + 2·2)$$

Match Opposite Plus

$$(x-2)(x^2+2x+4)$$

Problem #1 (Rational Expressions)

Multiply or divide as indicated. Simplify completely.

1)
$$\frac{9x^4 - 72x}{3x^2 - 12} \cdot \frac{x^2 + x - 2}{4x^3 + 8x^2 + 16x}$$

Factor & Cancel like factors!

$$9x^4 - 72x \rightarrow 9x(x^3 - 8) \rightarrow 9x(x - 2)(x^2 + 2x + 4)$$

$$3x^2 - 12 \rightarrow 3(x^2 - 4) \rightarrow 3(x - 2)(x + 2)$$

$$x^2 + 1x - 2 \rightarrow (x + 2)(x - 1)$$

$$4x^3 + 8x^2 + 16x \rightarrow 4x(x^2 + 2x + 4)$$

Problem #1 CONT...

1)
$$\frac{9x^4 - 72x}{3x^2 - 12} \cdot \frac{x^2 + x - 2}{4x^3 + 8x^2 + 16x}$$

$$\frac{9x(x-2)(x^2+2x+4)}{3(x-2)(x+2)} \cdot \frac{(x+2)(x-1)}{4x(x^2+2x+4)}$$

$$\frac{3}{3}\frac{9(x-1)}{3\cdot 4}$$

$$=\frac{3(x-1)}{4}$$

Problem #2 (Rational Expressions)

Multiply or divide as indicated. Simplify completely.

2)
$$\frac{x^2 + 13x + 36}{x^2 + 14x + 45}$$
 $\frac{x^2 + 5x}{x^2 - 3x - 28}$ Factor & Cancel like factors!

$$x^2 + 13x + 36 \rightarrow (x + 9)(x + 4)$$

$$x^2 + 14x + 45 \rightarrow (x + 9)(x + 5)$$

$$x^2 + 5x \rightarrow x(x + 5)$$

$$x^2 - 3x - 28 \rightarrow (x - 7)(x + 4)$$

Problem #2 CONT...

2)
$$\frac{x^2 + 13x + 36}{x^2 + 14x + 45} \cdot \frac{x^2 + 5x}{x^2 - 3x - 28}$$

$$\frac{(x+9)(x+4)}{(x+9)(x+5)} \cdot \frac{x(x+5)}{(x-7)(x+4)}$$

$$=\frac{x}{(x-7)} = \frac{x}{x-7}$$

2)
$$\frac{x}{x-7}$$

Problem #3 (Rational Expressions)

Multiply or divide as indicated. Simplify completely.

3)
$$\frac{x^2 + 5x - 6}{x^2 + 9x + 18} \div \frac{x^2 - 1}{x^2 + 7x + 12}$$

Division – Multiply by the reciprocal.

"Keep, Change, Flip!"
Always flip the 2nd fraction!

$$\frac{x^2 + 5x - 6}{x^2 + 9x + 18} \cdot \frac{x^2 + 7x + 12}{x^2 - 1}$$

Problem #3 CONT...

Factor & Cancel like factors!

$$\frac{x^2 + 5x - 6}{x^2 + 9x + 18}$$
 $\frac{x^2 + 7x + 12}{x^2 - 1}$

$$x^2 + 5x - 6 \rightarrow (x + 6)(x - 1)$$

$$x^2 + 9x + 18 \rightarrow (x + 6)(x + 3)$$

$$x^2 + 7x + 12 \rightarrow (x + 4)(x + 3)$$

$$x^2 - 1 \rightarrow (x - 1)(x + 1)$$

Problem #3 CONT...

$$\frac{x^2 + 5x - 6}{x^2 + 9x + 18} \cdot \frac{x^2 + 7x + 12}{x^2 - 1}$$

$$\frac{(x+6)(x-1)}{(x+6)(x+3)} \cdot \frac{(x+4)(x+3)}{(x+1)(x-1)}$$

$$=\frac{(x+4)}{(x+1)} = \frac{x}{x}$$

$$=\frac{x+4}{x+1}$$

3)
$$\frac{x+4}{x+1}$$

Problem #4 (Complex Fractions)

Simplify.

Find LCD and multiply each term by LCD!

$$LCD = 12x$$

$$\frac{9 + \frac{3}{x}}{\frac{x}{4} + \frac{1}{12}}$$

$$\frac{x}{\sqrt{12x} + \frac{1}{12} \cdot 12x}$$

$$\frac{108x + 36}{3x^2 + x}$$

$$=\frac{36(3x+1)}{x(3x+1)}$$

$$=\frac{36}{x}$$

4)
$$\frac{36}{x}$$

Problem #5 (Complex Fractions)

Simplify.

5)
$$\frac{5}{x} + \frac{4}{x^2}$$
 $\frac{25}{x^2} - \frac{16}{x}$

Find LCD and multiply each term by LCD!

$$LCD = x^2$$

$$\frac{5}{x} + \frac{4}{x^2} + \frac{25}{x^2} - \frac{16}{x}$$

$$=\frac{5x+4}{25-16x}$$

5)
$$\frac{5x + 4}{25 - 16x}$$

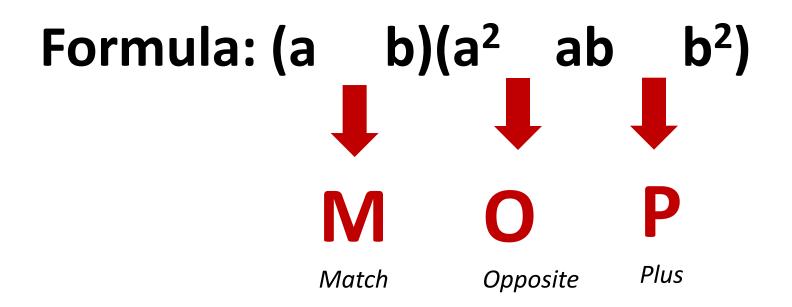
Problem #6 (Complex Fractions)

Simplify.

Find LCD and multiply each term by LCD!

 $LCD = x^2$

$$\frac{1}{x} + \frac{9}{x^{2}} \quad \frac{1}{x} \times x^{2} + \frac{9}{x^{2}} \times x^{2} + \frac{9}{x^{2}} \times x^{2} + \frac{729}{x^{2}} \times x^{2} + \frac{729}{x^{2}}$$


$$\frac{x+9}{3+720}$$

Sum of Cubes → Factor!

Formula:

Factor: $a^3 + b^3 OR a^3 - b^3$

a and b are cube roots!

$$\sqrt[3]{x^3} = x \rightarrow a$$

$$\sqrt[3]{729} = 9 \rightarrow b$$

(a b)(a·a ab b·b)

$$(x + 9)(x·x - 9x + 9·9)$$

Match Opposite Plus

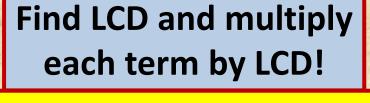
$$(x + 9)(x^2 - 9x + 81)$$

Problem #6 CONT...

$$\frac{x+9}{x^3+729}$$

$$=\frac{1(x+9)}{(x+9)(x^2-9x+81)}$$

$$= \frac{1}{x^2 - 9x + 81}$$


6)
$$\frac{1}{x^2 - 9x + 81}$$

Problem #7 (Complex Fractions)

Simplify.

7)

NOTE: 11 - x = -(x - 11)

$$\begin{array}{c|c}
10 & 11 \\
\hline
11 - x & x - 11 \\
\hline
3 & 8 \\
\hline
x & - 11
\end{array}$$

$$\frac{-10}{x} + \frac{11}{x - 11}$$
 $\frac{3}{3} + \frac{8}{3} + \frac{11}{3}$

$$LCD = x(x - 11)$$

$$\frac{-10}{(x-11)} + \frac{11}{(x-11)} + \frac{3}{(x-11)} + \frac{8}{(x-11)} \cdot x(x-11)$$

$$=\frac{-10x + 11x}{3(x-11) + 8x}$$

Problem #7 CONT...

$$=\frac{10x + 11x}{3(x-11) + 8x} = \frac{x}{3x-33+8x}$$

$$=\frac{x}{11x-33}$$

7)
$$\frac{x}{11x - 33}$$

Problem #8 (Polynomial Division)

Divide.

8)
$$(4x^2 - 33x + 8) \div (x - 8)$$

$$(x-8)$$
 $4x^2-33x+8$

Long Division of polynomials!

Steps on next slide!

8)
$$4x - 1$$

$$\mathbf{x} \cdot \mathbf{4x} = 4x^2$$

$$(x-8)[4x^2-33x+8$$
 $-4x^2+32x$

 $4x(x - 8) = 4x^2 - 32x$ Change signs!

$$\mathbf{x} \cdot \mathbf{1} = -1\mathbf{x}$$

Remainder = 0

$$-1(x - 8) = -1x + 8$$
Change signs!

4x - 1

8)
$$4x - 1$$

Problem #9 (Polynomial Division)

Divide.

9)
$$(15x^3 + 31x^2 - 2x - 17) \div (3x + 5)$$

$$(3x + 5)$$
 $15x^3 + 31x^2 - 2x - 17$

Long Division of polynomials!

Steps on next slide!

9)
$$5x^2 + 2x - 4 + \frac{3}{3x + 5}$$

$$5x^2 + 2x - 4$$

9)
$$5x^2 + 2x - 4 + \frac{3}{3x + 5}$$

$$-12x - 17$$

Remainder = +3

$$5x^2 + 2x - 4 + \frac{3}{(3x+5)}$$

$$3x \cdot \frac{5x^2}{} = 15x^3$$

$$5x^{2}(3x + 5) =$$

 $15x^{3} + 25x^{2}$
Change signs!

$$3x \cdot \frac{+2x}{} = 6x^2$$

$$2x(3x + 5) = 6x^2 + 10x$$

Change signs!

$$3x \cdot _{-4} = -12x$$

$$-4(3x + 5) =$$

$$-12x - 20$$

Change signs!

Problem #10 (Rational Exponents)

Use the properties of exponents to simplify the expression.

Write with positive exponents.

10)
$$\frac{x^{4/3} \cdot x^{6/5}}{x^{-1/2}}$$

Find LCD:

LCD for 3, 5, and 2 = **30**

$$\frac{4}{x^{\frac{10}{3}} \cdot \frac{6}{10}} \cdot \frac{6}{x^{\frac{6}{5}}} \cdot \frac{6}{6}$$

$$\frac{1}{x^{\frac{15}{15}}}$$

Problem #10 CONT...

$$\chi^{\frac{4}{3}} \cdot \frac{\mathbf{10}}{\mathbf{10}} \cdot \chi^{\frac{6}{5}} \cdot \frac{\mathbf{6}}{\mathbf{6}}$$

$$\chi^{-\frac{1}{2}\cdot\frac{15}{15}}$$

$\chi \frac{40}{30}$	$\cdot \ \chi \frac{36}{30}$
x	15 30

Properties to Remember:

1)
$$x^m \cdot x^n = x^{m+n}$$

2)
$$\frac{x^m}{x^n} = x^{m-n}$$

$$\frac{40}{30} + \frac{36}{30} - (-\frac{15}{30}) = \frac{91}{30}$$

$$= \frac{91}{30}$$

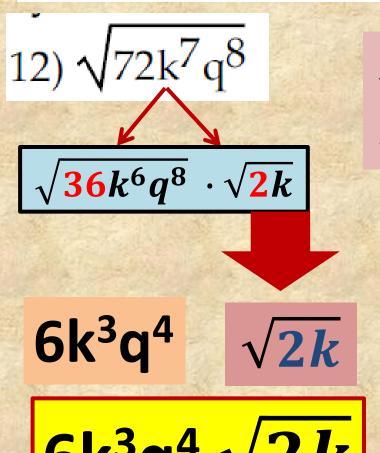
10)
$$x^{91/30}$$

Problem #11 (Rational Exponents)

Use the properties of exponents to simplify the expression.

Write with positive exponents.

11)
$$\frac{(3x^{5/3})^2}{x^{1/6}} = \frac{(3x^{\frac{5}{3}}) \cdot (3x^{\frac{5}{3}})}{\frac{1}{x^{\frac{6}{6}}}}$$
 Add exponents! $x^m \cdot x^n = x^{m+n}$


$$= \frac{9x^{\frac{10}{3}}}{x^{\frac{1}{6}}}$$
 Subtract exponents! $\frac{x^m}{x^n} = x^{m-n}$ $= 9x^{\frac{19}{6}}$
10 1 20 1 19

Problem #12 (Radicals)

Simplify the radical expression.

Assume that all variables represent positive real numbers.

<i>[-6</i>	- 2
$\sqrt{k^6} =$	k^{3}
$\sqrt{q^8} =$	q^4

Perfect square	Square root
1	$\sqrt{1} = 1$
4	$\sqrt{4} = 2$
9	$\sqrt{9} = 3$
16	$\sqrt{16} = 4$
25	$\sqrt{25} = 5$
36	$\sqrt{36} = 6$
49	$\sqrt{49} = 7$

$$6k^3q^4\sqrt{2k}$$

12)
$$6k^3q^4\sqrt{2k}$$

Problem #13 (Radicals)

Simplify the radical expression.

Assume that all variables represent positive real numbers.

13)
$$\frac{\sqrt{189x^5y^6}}{\sqrt{3y^4}}$$

$$=\frac{\sqrt{189x^5y^6}}{\sqrt{3y^4}}$$

$$= \sqrt{63x^5y^2}$$

$$\sqrt{9x^4y^2} \cdot \sqrt{7x^1}$$

 $3x^2y\sqrt{7x}$

 $3x^2y$

 $\sqrt{7x}$

13) $3x^2y\sqrt{7x}$

Problem #14 (Radicals)

Add or subtract.

Assume all variables represent positive real numbers.

14)
$$\sqrt{9} + \sqrt{20} + \sqrt{36} + \sqrt{405}$$

NOTE: $\sqrt{9} = 3$
 $\sqrt{4} = 2$
 $= 3 + \sqrt{4}\sqrt{5} + 6 + \sqrt{81}\sqrt{5}$
 $\sqrt{36} = 6$
 $\sqrt{81} = 9$

$$= 9 + 11\sqrt{5}$$

14)
$$11\sqrt{5} + 9$$

Problem #15 (Radicals)

Add or subtract.

Assume all variables represent positive real numbers.

$$= \sqrt[3]{27y} - \sqrt[3]{128y}$$

$$= \sqrt[3]{27y} - \sqrt[3]{128y}$$

$$= \sqrt[3]{\sqrt[3]{y}} - \sqrt[3]{64}\sqrt[3]{2y}$$

$$= \sqrt[3]{\sqrt[3]{y}} - \sqrt[4]{4}\sqrt[3]{2y}$$

NOTE:

$$\sqrt[3]{27} = 3$$
Since $3.3.3 = 27$
 $\sqrt[3]{64} = 4$

Since 4.4.4 = 64

$$= 3\sqrt[3]{y} - 4\sqrt[3]{2y}$$

15)
$$3\sqrt{y} - 4\sqrt{2y}$$

Problem #16 (Radicals)

Solve. 16)
$$\sqrt{2x-1} + 4 = 10$$

Isolate radical!

$$\sqrt{2x - 1} + 4 = 10$$

$$\sqrt{2x-1}=6$$

$$2x = 37$$

$$x = \frac{37}{2}$$

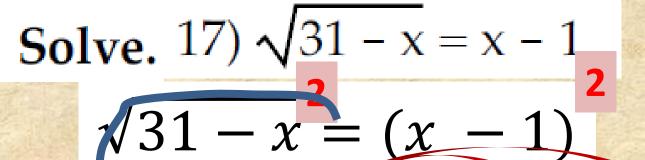
16)
$$\frac{37}{2}$$

Problem #16 - - Checking:

$$\sqrt{2x-1}+4=10$$

$$x = \frac{37}{2}$$

$$\frac{37}{2} - 1 + 4 = 10$$


$$\sqrt{37-1}+4=10$$

$$\sqrt{36} + 4 = 10$$

$$6 + 4 = 10$$

Problem #17 (Radicals)

Square both sides!

$$31 - x = (x - 1)(x - 1)$$

FOIL!

$$31 - \chi = \chi^2$$

$$-2x+1$$

+ 1x | - 3:

Make equation equal to zero!

$$0 = x^2 - x - 30$$

Problem #17 CONT...

Factor trinomial!

$$x^2 - 1x - 30 = 0$$

$$(x-6)(x+5)=0$$

Solve:

$$x - 8 = 0; x + 5 = 0$$

+6 +6 -5 -5

-30

 $1 \cdot 30$

2 · 15

3 · 10

Solutions: x = 6; x = -5

5 · 6

Problem #17 - - Checking!

17)
$$\sqrt{31 - x} = x - 1$$

$$\sqrt{31 - \mathbf{x}} = \mathbf{x} - 1$$

$$\sqrt{31-6} = 6 - 1$$

$$\sqrt{25} = 5$$

Extraneous Solution

$$\sqrt{31 - (-5)} = 5 - 1$$
 $\sqrt{36} = -6$

Problem #18 (Radicals)

Solve. 18)
$$\sqrt{2x+5} = 3 + \sqrt{x-2}$$

Square both sides!

$$\sqrt{2x+5} = (3+\sqrt{x-2})$$

FOIL!

$$2x + 5 = (3 + \sqrt{x - 2})(3 + \sqrt{x - 2})$$

$$2x + 5 = 9 + 3\sqrt{x - 2}$$

$$+3\sqrt{x-2}+\sqrt{x-2}^{2}$$

$$2x + 5 = 9 + 6\sqrt{x - 2} + x - 2$$

Problem #18 CONT...

$$2x + 5 = 9 + 6\sqrt{x - 2} + x = 2$$

$$2x + 5 = 7 + 6\sqrt{x} - 2 + 4$$

$$-x - 7 = 7$$

$$-x - 7 = 7$$
Isolate
$$6\sqrt{x} - 2$$

$$(x-2) = [6\sqrt{x-2}]$$

$$(x-2)(x-2) = 36(x-2)$$

+OIL!

$$x^2 - 4x + 4 = 36x - 72$$

Problem #18 CONT....

$$x^2 - 4x + 4 = 36x - 72$$
 $-36x + 72 - 36x + 72$

Make equation equal to zero!

$$x^2 - 40x + 76 = 0$$

$$(x-38)(x-2)=0$$

 $x = \{2, 38\}$

Check your solutions!

18) 2, 38

Solve by factoring!

 $1 \cdot /6$

2 · 38

 $4 \cdot 19$

Problem #18 - - Checking!

18)
$$\sqrt{2x+5} = 3 + \sqrt{x-2}$$
 X = **2**; **X** = **38**

$$x = 2; x = 38$$

$$\sqrt{2x+5} = 3 + \sqrt{x-2}$$

$$\sqrt{2 \cdot 2 + 5} = 3 + \sqrt{2 - 2}$$

$$\sqrt{9} = 3 + \sqrt{0}$$
 $3 = 3$

$$3 = 3$$

NO **Extraneous** Solutions!

18) 2, 38

$$\sqrt{2 \cdot 38 + 5} = 3 + \sqrt{38 - 2}$$

$$\sqrt{81} = 3 + \sqrt{36} \quad 9 = 3 + 6$$

$$9 = 3 + 6$$

Problem #19 (Radicals)

19)
$$\sqrt{4x+5} = \sqrt{2x-2} - 3$$

$$\sqrt{4x+5} = (\sqrt{2x-2} - 3)$$

Square both sides!

$$4x + 5 = (\sqrt{2x - 2} - 3)(\sqrt{2x - 2} - 3)$$

$$4x + 5 = \sqrt{2x - 2} - 3\sqrt{2x - 2}$$

 $-3\sqrt{2x-2}+9$

$$4x + 5 = 2x - 2 - 6\sqrt{2x - 2} + 9$$

Problem #19 CONT...

$$4x + 5 = 2x - 2 - 6\sqrt{2x - 2} + 9$$
 $4x + 5 = 2x + 7 - 6\sqrt{2x - 2}$
 $-2x - 7$
 $-2x - 7$
 $-2x - 7$
Square Both

$$(2x-2) = [-6\sqrt{2x-2}]^2$$

Square Both Sides!

$$(2x-2)(2x-2)=36(2x-2)$$

FOIL!

Distribute!

Back to Manu

Problem #19 CONT...

$$(2x-2)(2x-2)=36(2x-2)$$

$$4x^2 - 4x - 4x + 4 = 72x - 72$$

$$4x^{2} - 8x + 4 = 12x - 72$$
 $-72x + 72 - 72x + 72$

Make equation equal to 0.

$$4x^2 - 80x + 76 = 0$$

Divide each term by 4.

4

4

4

4

$$x^2 - 20x + 19 = 0$$

Problem #19 (By Factoring):

$$x^2 - 20x + 19 = 0$$

$$(x-19)(x-1)=0$$

$$x = \{1, 19\}$$

We should check our solutions!

Problem #19 (By Quadratic Formula):

$$x^2 - 20x + 19 = 0$$

Use Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
; Just plug in a, b, c

Solve by quadratic formula!

$$1x^2 - 20x + 19 = 0$$

So
$$a = 1$$
, $b = (-20)$, $c = 19$

$$x = \frac{-(-20)\pm\sqrt{(-20)^2-4(1)(19)}}{2(1)}$$

Problem #19 CONT...

$$x = \frac{-(-20)\pm\sqrt{(-20)^2-4(1)(19)}}{2(1)}$$

$$x = \frac{20 \pm \sqrt{324}}{2} \sqrt{324} = 18$$

$$\sqrt{324} = 18$$

$$x=\frac{20\pm 18}{2}$$

$$=\frac{20}{2}\pm\frac{18}{2}=10\pm9$$

$$= 10 \pm 9$$

$$x = \{10 - 9, 10 + 9\}$$

$$x = \{1, 19\}$$

We should check our solutions!

Problem #19 Checking.. x = XX

19)
$$\sqrt{4x+5} = \sqrt{2x-2} - 3$$

$$\sqrt{4x+5} = \sqrt{2x-2} - 3$$

$$\sqrt{4(1)+5} = \sqrt{2(1)-2}-3$$

$$\sqrt{9} = \sqrt{0} - 3$$

$$\sqrt{4(19) + 5} = \sqrt{2(19) - 2} - 3$$

$$\sqrt{81} = \sqrt{36} - 3$$
 | 9 | (4-3) | (5)

Problem #20 (Complex Numbers)

Perform the indicated operation. Write the result in the form a + bi.

$$3 - 6i + 7 + 2i$$

$$=10-4i$$

20) 10 – 4i

Problem #20 (Calculator Tip)

Perform the indicated operation. Write the result in the form a + bi.

$$20) (3 - 6i) + (7 + 2i)$$

$$(3-6i)+(7+2i)$$

$$i = 2^{nd}$$
 key + period (next to 0)

$$=10-4i$$

Problem #21 (Complex Numbers)

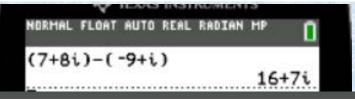
Perform the indicated operation. Write the result in the form a + bi.

21)
$$(7 + 8i) - (-9 + i)$$

21) (7 + 8i) - (-9 + i) Combine Like Terms! Distribute minus sign!

$$(7 + 8i) - 1(-9 + i)$$

$$7 + 8i + 9 - 1i$$


$$21) 16 + 7i$$

Problem #21 (Calculator Tip)

Perform the indicated operation. Write the result in the form a + bi.

21)
$$(7 + 8i) - (-9 + i)$$

$$(7+8i)-(-9+i)$$

$$i = 2^{\text{nd}} \text{ key} + \text{period (next to 0)}$$

$$=16+7i$$

Problem #22 (Complex Numbers)

Perform the indicated operation. Write the result in the form a + bi.

$$(8 + 9i)(8 + 9i)$$
 Multiply (FOIL)!

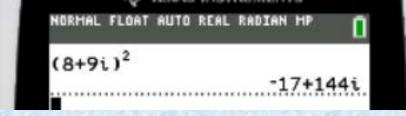
$$64 + 72i + 81i^2$$

64 + 72*i*
+72*i* + 81*i*² Remember:
$$i^2 = (-1)$$

$$i^2 = (-1)$$

$$= 64 + 144i + 81(-1)$$

$$= 64 + 144i - 81$$


$$= -17 + 144i$$
 [22) $-17 + 144i$

Problem #22 (Calculator Tip)

Perform the indicated operation. Write the result in the form a + bi.

22)
$$(8 + 9i)^2$$

$$(8+9i)^{2}$$

$$i = 2^{\text{nd}} \text{ key} + \text{period (next to 0)}$$

$$= -17 + 144i$$

$$22) -17 + 144i$$

Problem #23 (Complex Numbers)

Perform the indicated operation. Write the result in the form a + bi.

23)
$$\frac{8 - 5i}{8 + 2i}$$

Rationalize the denominator!

To do so, multiply by the conjugate.

Conjugates: (a + b)(a - b)

Conjugate of
$$8 + 2i \rightarrow 8 - 2i$$

$$\frac{(8-5i)}{(8+2i)} \cdot \frac{(8-2i)}{(8-2i)}$$

Multiply/FOIL!

Numerator:

Remember:

$$i^2 = (-1)$$

$$(8-5i)(8-2i)$$

$$64 - 16i$$

$$-40i + 10i^2$$

$$= 54 - 56i$$

Numerator

$$= 64 - 56i + 10(-1)$$

$$=64-56i-10$$

Problem #23 CONT Denominator:

Remember:

$$i^2 = (-1)$$

$$(8 + 2i)(8 - 2i)$$

$$+16i-4i^2$$

= 68

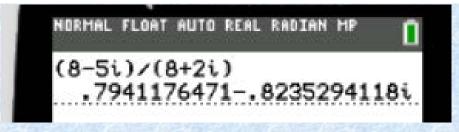
$$= 64 - 4(-1)$$
 $= 64 + 4 = 68$

Numerator = 54 - 56i

Denominator = 68

$$= \frac{54 \div 2}{68 \div 2} - \frac{56 \div 4}{68 \div 4}$$

$$=\frac{27}{34}-\frac{14}{17}i$$


23)
$$\frac{27}{34} - \frac{14}{17}i$$

Problem #23 (Calculator Tip)

Perform the indicated operation. Write the result in the form a + bi.

23)
$$\frac{8 - 5i}{8 + 2i}$$

 $i = 2^{nd} key + period (next to 0)$

Problem #23 Calculator CONT...

Change to Fraction:

MATH KEY; Select 1) FRAC

- **18**⊁Frac
- 2:▶Dec

Ans≯Frac

23)
$$\frac{27}{34} - \frac{14}{17}$$
i

Problem #24 (Quadratic Equation)

Solve the equation by completing the square.

24)
$$x^2 - 4x + 13 = 0$$

$$-18 - 13$$

$$x^2 - 4x$$
 $= -13$

41.

- 2) Square it!
- 3) Add it to both sides!

$$\frac{1}{2}(-4) = -2;$$

$$(-2)^2 = +4$$

Factor trinomial!

$$x^2 - 4x + 4 = -9$$

$$x^2 - 4x + 4 = -9$$

$$\sqrt{x^2} = x$$
; $\sqrt{4} = 2$
Match middle sign!

$$(x-2)(x-2)=-9$$

$$(x-2)^2 = -9$$

$$x = 2 \pm 3i$$

$$(x-2)^2 = \pm \sqrt{-9}$$
 $x^2 = \pm \sqrt{-9}$
 $+2$
 $+2$

$$x = \{2 - 3i, 2 + 3i\}$$

Problem #25 (Quadratic Equation)

Solve the equation by completing the square.

25)
$$x^2 + 3x + 9 = 0$$

$$x^2 + 3x _ + \frac{9}{4} _ = 9 + \frac{9}{4}$$

- 1) Half the middle coefficient (b).
- 2) Square it!
- 3) Add it to both sides!

$$\frac{1}{2}(3) = \frac{3}{2};$$

$$(\frac{3}{2})^2 = +\frac{9}{4}$$

$$9 + \frac{9}{4} = \frac{9}{1} + \frac{9}{4}$$

$$=\frac{36}{4}+\frac{9}{4}=\frac{45}{4}$$

$$x^2 + 3x + \frac{9}{4} = \frac{45}{4}$$

Factor trinomial!

$$(x + \frac{3}{2})(x + \frac{3}{2}) = \frac{45}{4}$$
 $\sqrt{x^2} = x$; $\sqrt{\frac{9}{4}} = \frac{3}{2}$ Match middle sign!

$$\sqrt{x^2} = x; \sqrt{\frac{9}{4}} = \frac{3}{2}$$
Match middle sign!

$$(x + \frac{3}{2})^2 = \frac{45}{4}$$

$$(x+\frac{3}{2})^2 = \pm \sqrt{\frac{45}{4}}$$

$$x + \frac{3}{2} = \pm \frac{45}{4}$$

$$\sqrt{45} = \sqrt{9} \cdot \sqrt{5}$$
$$= 3\sqrt{5}$$

$$\sqrt{4}=2$$

$$x + \frac{3}{2} = \pm \frac{3\sqrt{5}}{2}$$

$$x + \frac{3}{2} = \pm \frac{3\sqrt{5}}{2}$$

$$x = -\frac{3}{2} + \frac{3\sqrt{5}}{2}$$

$$=\frac{-3\pm3\sqrt{5}}{2}$$

$$\frac{-3 \pm 3\sqrt{5}}{2}$$

$$x = \frac{-3 - 3\sqrt{5}}{2}, \frac{-3 + 3\sqrt{5}}{2}$$

25)
$$\frac{-3 - 3\sqrt{5}}{2}$$
, $\frac{-3 + 3\sqrt{5}}{2}$

Problem #25 (Alternative Method)

Solve the equation by completing the square.

$$4x^2 + 12x + 9 = 45$$

Factor trinomial!

$$4x^2 + 12x + 9 = 45$$

$$4x^2 + 12x + 9 = 45$$
 $\sqrt{4x^2} = 2x$; $\sqrt{9} = 3$ Match middle sign!

$$(2x + 3)(2x + 3) = 45$$

$$(2x + 3)^2 = 45 \sqrt{(2x + 3)^2} = \pm \sqrt{45}$$

$$2x + 3 = \pm \sqrt{45}$$

$$2x + 3 = \pm 3\sqrt{5}$$

$$\sqrt{45} = \sqrt{9} \cdot \sqrt{5}$$
$$= 3\sqrt{5}$$

$$2x + 3 = \pm 3\sqrt{5}$$

$$-3$$

$$\frac{2x}{2} = -3 \pm 3\sqrt{5}$$

$$\mathbf{x} = \frac{-3 \pm 3\sqrt{5}}{2}$$

$$x = \frac{-3 - 3\sqrt{5}}{2}, \frac{-3 + 3\sqrt{5}}{2}$$

25)
$$\frac{-3 - 3\sqrt{5}}{2}$$
, $\frac{-3 + 3\sqrt{5}}{2}$

Problem #26 (Quadratic Equation)

Solve the equation by completing the square.

26)
$$8x^2 - 5x + 1 = 0$$

$$8x^2 - 5x = -1$$
Coefficient of x^2 must be 1!

$$x^2 - \frac{5}{8}x + \frac{25}{256} = -\frac{1}{8} + \frac{25}{256}$$

- 1) Half the middle coefficient (b).
- 2) Square it!
- 3) Add it to both sides!

$$x^{2} - \frac{5}{8}x + \frac{25}{256} = -\frac{1}{8} + \frac{25}{256}$$

$$(-\frac{5}{8})^{2} = -\frac{5}{16};$$

$$(-\frac{5}{16})^{2} = +\frac{25}{256}$$

$$x^2 - \frac{5}{8}x + \frac{25}{256} = -\frac{1}{8} + \frac{25}{256}$$

$$-\frac{1}{8} \cdot \frac{32}{32} + \frac{25}{256} = -\frac{32}{256} + \frac{25}{256} = -\frac{7}{256}$$

$$x^2 - \frac{5}{8}x + \frac{25}{256} = -\frac{7}{256}$$

$$x^2 - \frac{5}{8}x + \frac{25}{256} = -\frac{7}{256}$$

Factor trinomial!

$$\sqrt{x^2} = x; \sqrt{\frac{25}{256}} = \frac{5}{16}$$
Match middle sign!

$$(x - \frac{5}{16})(x - \frac{5}{16}) = -\frac{7}{256}$$
$$(x - \frac{5}{16})^2 = -\frac{7}{256}$$

$$(x-\frac{5}{16})^2=-\frac{7}{256}$$

$$\sqrt{(x - \frac{5}{16})^2} = \pm \sqrt{\frac{-7}{256}} = 1$$

$$\sqrt{256} = 16$$

$$x - \frac{5}{16} = \pm \frac{i\sqrt{7}}{16}$$

$$x = \frac{5}{16} \pm \frac{i\sqrt{7}}{16}$$

$$=\frac{5\pm i\sqrt{7}}{16}$$

$$\frac{5 \pm i\sqrt{7}}{16}$$

$$x = \frac{5 - i\sqrt{7}}{16}, \frac{5 + i\sqrt{7}}{16}$$

26)
$$\frac{5 - i\sqrt{7}}{16}$$
, $\frac{5 + i\sqrt{7}}{16}$

Problem #26 (Alternative Method)

Solve the equation by completing the square.

26)
$$8x^2 - 5x + 1 = 0$$

$$8x^{2} - 5x = -1$$
8 Coefficient of x² must be 1!

- 2) Square it!
- 3) Add it to both sides!

$$x^{2} - \frac{5}{8}x + \frac{25}{256} = -\frac{1}{8} + \frac{25}{256} = -\frac{5}{16};$$

$$(-\frac{5}{8})^{2} = -\frac{5}{16};$$

$$\frac{1}{2}\left(-\frac{5}{8}\right) = -\frac{5}{16};$$

$$(-\frac{5}{16})^2 = +\frac{25}{256}$$

$$LCD = 256$$

$$\frac{5}{x^2} - \frac{5}{8}x + \frac{25}{256} + \frac{25}{256} = -\frac{1}{8} + \frac{32}{256} + \frac{25}{256} = \frac{1}{256} = \frac{1}{256$$

$$256x^2 - 160x + 25 = -32 + 25$$

$$256x^2 - 160x + 25 = -7$$
 Factor trinomial!

$$\sqrt{256x^2} = 16x$$
; $\sqrt{25} = 5$ Match middle sign!

$$(16x - 5)(16x - 5) = -7$$

 $(16x - 5)^2 = -7$

Problem #26 CONT... $(16x - 5)^2 = -7$

$$\sqrt{(16x-5)^2} = \pm \sqrt{-7}$$

$$16x - 5 = \pm \sqrt{-7}$$

$$\sqrt{-7} = \sqrt{-1} \cdot \sqrt{7}$$
$$= i\sqrt{7}$$

$$16x - 5 = \pm i\sqrt{7}$$

$$16x = 5 \pm i\sqrt{7}$$

16

$$\mathbf{x} = \frac{5 \pm i\sqrt{7}}{16}$$

$$\mathbf{x} = \frac{5 \pm i\sqrt{7}}{16}$$

$$x = \frac{5 - i\sqrt{7}}{16}, \frac{5 + i\sqrt{7}}{16}$$

26)
$$\frac{5 - i\sqrt{7}}{16}$$
, $\frac{5 + i\sqrt{7}}{16}$

Problem #27 (Quadratic Equation)

Use the quadratic formula to solve the equation.

27)
$$x^2 + 10x + 3 = 0$$

Use Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
; Just plug in a, b, c

Solve by quadratic formula!

$$1x^2 + 10x + 3 = 0$$

So
$$a = 1$$
, $b = 10$, $c = 3$

$$x = \frac{-10 \pm \sqrt{10^2 - 4(1)(3)}}{2(1)}$$

$$x = \frac{-10 \pm \sqrt{10^2 - 4(1)(3)}}{2(1)}$$

$$x=\frac{-10\pm\sqrt{88}}{2}$$

$$x = \frac{-10 \pm 2\sqrt{22}}{2 \pm 2}$$

$$\sqrt{88} = \sqrt{4} \cdot \sqrt{22}$$
$$= 2\sqrt{22}$$

All outsides numbers are divisible by 2.

$$x = \frac{-5 \pm 1\sqrt{22}}{1} = -5 \pm \sqrt{22}$$

$$x=-5\pm\sqrt{22}$$

$$\mathbf{x} = \{-5 - \sqrt{22}, -5 + \sqrt{22}\}$$

27)
$$-5 - \sqrt{22}, -5 + \sqrt{22}$$

Problem #28 (Quadratic Equation)

Use the quadratic formula to solve the equation.

28)
$$16x^2 + 1 = 3x$$
 Make equation = 0
$$-3x = -3x$$

$$16x^2 - 3x + 1 = 0$$

$$-3x = \sqrt{3} \times 16x^2 - 3x + 1 = 0$$

Use Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
; Just plug in a, b, c

Solve by quadratic formula!

$$16x^2 - 3x + 1 = 0$$

So
$$a = 16$$
, $b = -3$, $c = 1$

Solve by quadratic formula! $16x^2 - 3x + 1 = 0$ So a = 16, b = -3, c = 1

$$x = \frac{-(-3)\pm\sqrt{(-3)^2-4(16)(1)}}{2(16)}$$

$$x=\frac{3\pm\sqrt{-55}}{32}$$

$$\sqrt{-55} = \sqrt{-1} \cdot \sqrt{55}$$
$$= i\sqrt{55}$$

$$x = \frac{3 - i\sqrt{55}}{32}, \frac{3 + i\sqrt{55}}{32}$$

28)
$$\frac{3 - i\sqrt{55}}{32}$$
, $\frac{3 + i\sqrt{55}}{32}$

Problem #29 (Square Root Method)

Use the square root property to solve the quadratic equation.

29)
$$(x + 7)^2 = 24$$

$$(x + 7)^2 = 24$$

29) $(x + 7)^2 = 24$ Do opposite operations:

 $(x + 7)^2 = 24$ Opposite of exponents \rightarrow Roots

$$\sqrt{(x+7)^2} = \pm \sqrt{24}$$

$$x + 7 = \pm \sqrt{24}$$

$$x + 7 = \pm \sqrt{24} \quad \sqrt{24} = \sqrt{4} \cdot \sqrt{6} = 2\sqrt{6}$$

$$-7 \quad x = -7 \pm 2\sqrt{6}$$

$$\mathbf{x} = \{-7 - 2\sqrt{6}, -7 + 2\sqrt{6}\}$$
 29) $-7 \pm 2\sqrt{6}$

29)
$$-7 \pm 2\sqrt{6}$$

Problem #30 (Quadratic Equation/ Problem Solving)

30) A ball is thrown upward with an initial velocity of 42 meters per second from a cliff that is 130 meters high. The height of the ball is given by the quadratic equation

 $h = -4.9t^2 + 42t + 130$ where h is in meters and t is the time in seconds since the ball was thrown. Find the time it takes the ball to hit the ground. Round your answer to the nearest tenth of a second.

Hitting the ground:

Height = 0

$$-4.9t^2 + 42t + 130 = 0$$

Solve by quadratic formula!

$$-4.9t^2 + 42t + 130 = 0$$

So
$$a = (-4.9)$$
, $b = 42$, $c = 130$

Problem #30 CONT...

Use Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
; Just plug in a, b, c

Solve by quadratic formula!

$$-4.9t^2 + 42t + 130 = 0$$

So
$$a = (-4.9)$$
, $b = 42$, $c = 130$

$$x = \frac{-42 \pm \sqrt{42^2 - 4(-4.9)(130)}}{2(-4.9)}$$

$$x = \frac{-42 - \sqrt{4312}}{-9.8}, \frac{-42 + \sqrt{4312}}{-9.8}$$

Problem #30 CONT...

$$x = \frac{-42 - \sqrt{4312}}{-9.8}, \frac{-42 + \sqrt{4312}}{-9.8}$$

 $x \approx \{10.986, -2.4149\}$

Extraneous Solution; Negative solution does not make sense!

 $x \approx 11.0 \text{ seconds}$ Nearest tenth

30) 11.0 sec

Problem #31 (Quadratic Equation/ Problem Solving)

31) A rocket is launched from the top of a cliff that is 112 feet high with an initial velocity of 336 feet per second. The height, h(t), of the rocket after t seconds is given by the equation $h(t) = -16t^2 + 336t + 112$. How long after the rocket is launched will it strike the ground? Round to the nearest tenth of a second, if necessary.

Hitting the ground: Height = 0

$$-16t^2 + 336t + 112 = 0$$

-16 -16 -16 -16

$$1t^2 - 21t - 7 = 0$$

Problem #31 CONT...

Use Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
; Just plug in a, b, c

Solve by quadratic formula!

$$1t^2 - 21t - 7 = 0$$

So
$$a = 1$$
, $b = (-21)$, $c = (-7)$

$$x = \frac{-(-21)\pm\sqrt{(-21)^2-4(1)(-7)}}{2(1)}$$

$$x=rac{{f 21}-\sqrt{469}}{2},rac{{f 21}+\sqrt{469}}{2}$$

Problem #31 CONT...

$$x = \frac{21 - \sqrt{469}}{2}, \frac{21 + \sqrt{469}}{2}$$

$$x \approx \{-0.3282, 21.3282\}$$

Extraneous Solution; Negative solution does not make sense!

$$x \approx 21.3 \text{ seconds}$$
Nearest tenth

31) 21.3 sec

Problem #32 (Vertex Problem)

32) An arrow is fired into the air with an initial velocity of 64 feet per second. The height in feet of the arrow t seconds after it was shot into the air is given by the function

 $h(t) = -16t^2 + 64t$. Find the maximum height of the arrow.

Find vertex!

Maximum value of parabola = Vertex (h, k).

Vertex formula:

$$t = -\frac{b}{2a}$$
 (x-coordinate)

h(t) = **y-coordinate**

$$t = -\frac{64}{2(-16)} = \frac{64}{32} = 2$$

The arrow reaches the maximum height after 2 seconds.

$$a = -16$$
, $b = 64$

$$h(t) = -16t^2 + 64t$$

$$h(2) = -16(2)^2 + 64(2)$$

= 64 feet (Maximum height)

32) 64 ft

Problem #33 (Graphing Quadratics)

Sketch the graph of the quadratic function by finding the vertex, intercepts, and determining if the graph opens upward or downward.

33)
$$f(x) = x^2 + 2x - 3$$

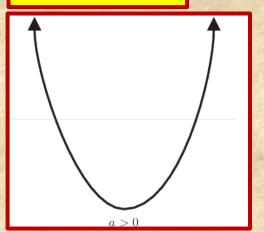
$$f(x) = 1x^2 + 2x - 3$$
;
a = 1, b = 2

$$a = 1, b = 2$$

Vertex formula:

$$x = -\frac{b}{2a}$$
 (x-coordinate)

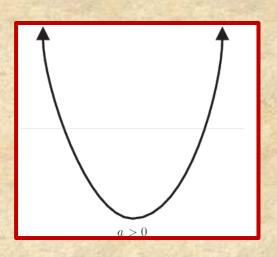
$$f(x) = y$$
-coordinate

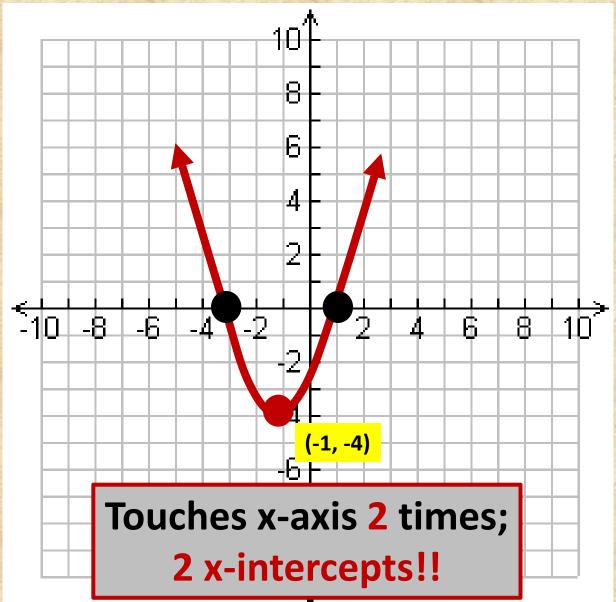

$$x = -\frac{2}{2(1)} = -\frac{2}{2} = -1$$

$$f(-1) = (-1)^2 + 2(-1) - 3 = -4$$

Since a = 1 (positive) **Opens UPWARD!**

Vertex:


$$(-1, -4)$$



Problem #33 (Sketch Graph):

Vertex: (-1, -4)

Problem #33 CONT...

Sketch the graph of the quadratic function by finding the vertex, intercepts, and determining if the graph opens upward or downward.

33)
$$f(x) = x^2 + 2x - 3$$

y-intercept:
$$x = 0$$

x-intercept:
$$y = 0$$

y-intercept:
$$x = 0$$

$$f(0) = 0^2 + 2(0) - 3 = -3$$

Solve by factoring!

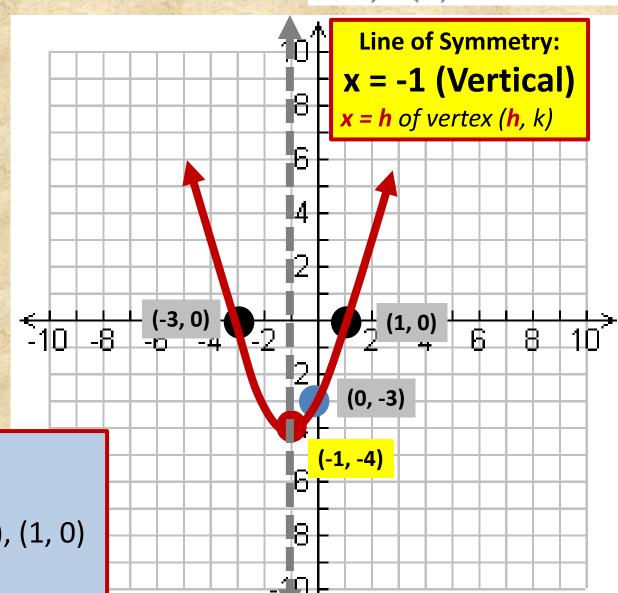
$$x^2 + 2x - 3 = 0$$

$$(0, -3)$$

x-intercept:
$$y = 0$$

 $x^{2} + 2x - 3 = 0$
 $x^{2} + 2x - 3 = 0$ fa

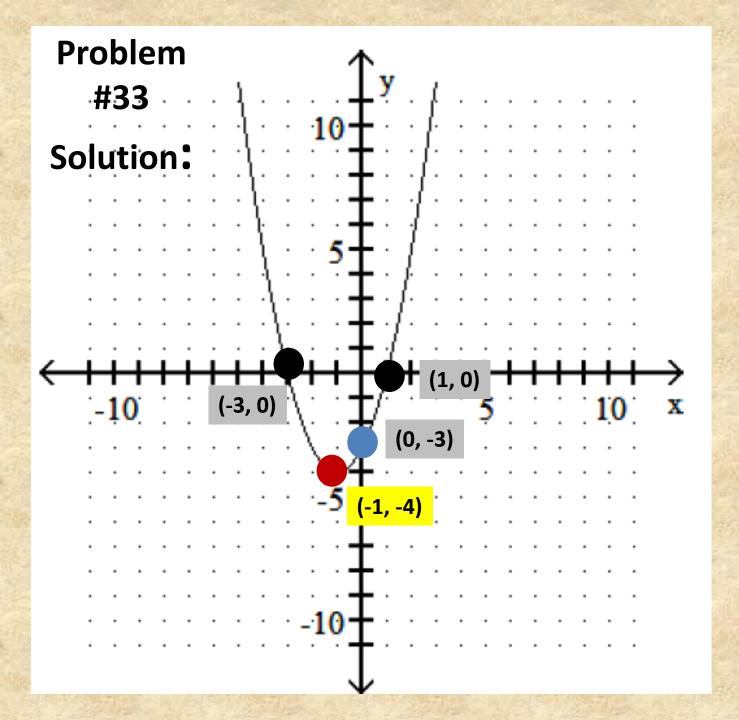
$$(x + 3)(x - 1) = 0$$


$$x = \{-3, 1\}$$

x-intercepts: (-3, 0), (1, 0)

Problem #33 CONT.. 33) $f(x) = x^2 + 2x - 3$

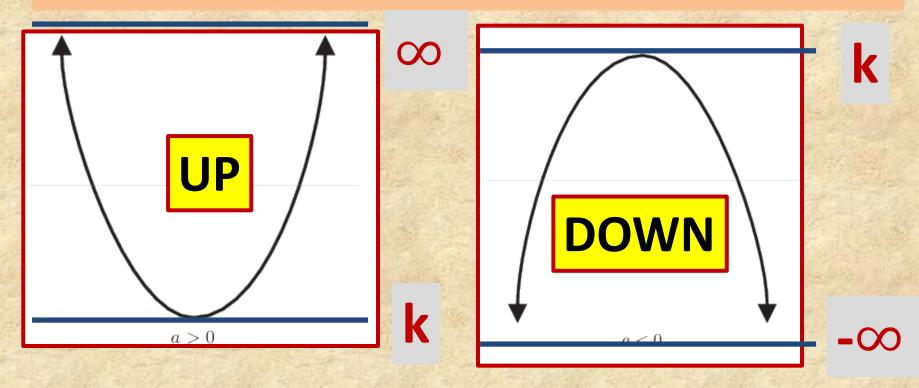
33)
$$f(x) = x^2 + 2x - 3$$


Vertex: (-1, -4)

y-intercept: (0, -3)

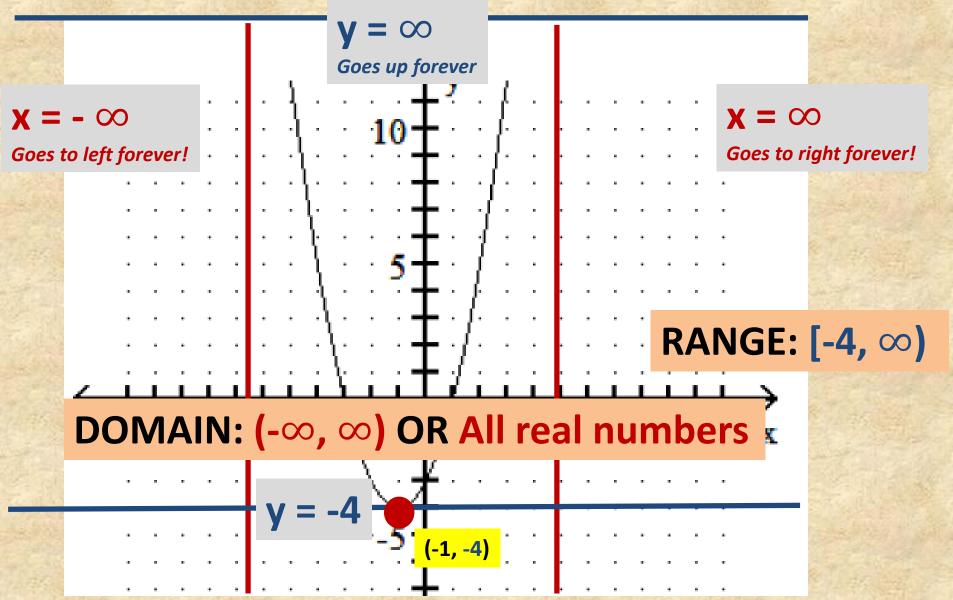
x-intercepts: (-3, 0), (1, 0)

Opens UPWARD!



Domain and Range for all parabolas

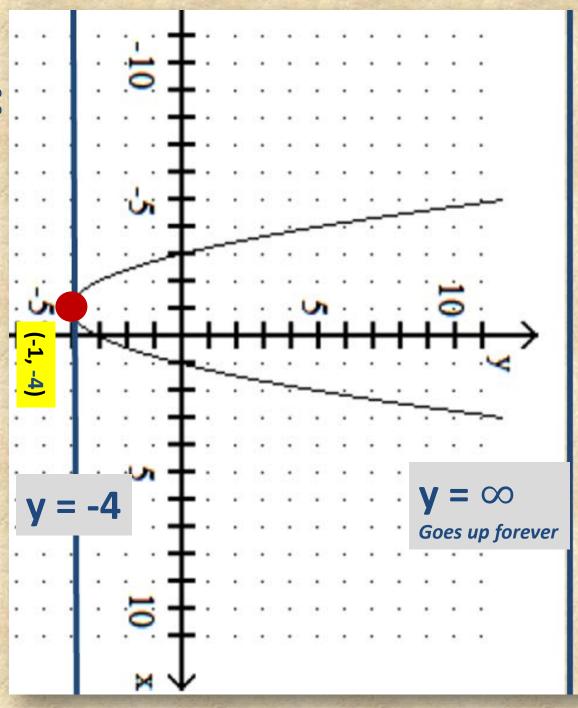
DOMAIN: $(-\infty, \infty)$ **OR All real numbers**



RANGE: [k, ∞)

RANGE: $(-\infty, k]$

Find Domain and Range for #33



Range Visualized:

RANGE:

 $[-4, \infty)$

Problem #34 (Graphing Quadratics)

Graph the function. Find the vertex, y-intercept, and x-intercepts (if any).

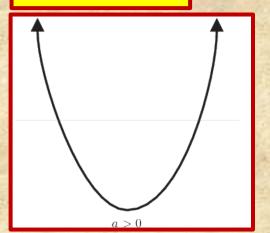
34)
$$F(x) = 2x^2 - 4x + 5$$

$$F(x) = 2x^2 - 4x + 5;$$

a = 2, b = -4

Vertex formula:

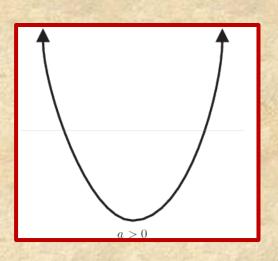
$$x = -\frac{b}{2a}$$
 (x-coordinate)
 $f(x) = y$ -coordinate

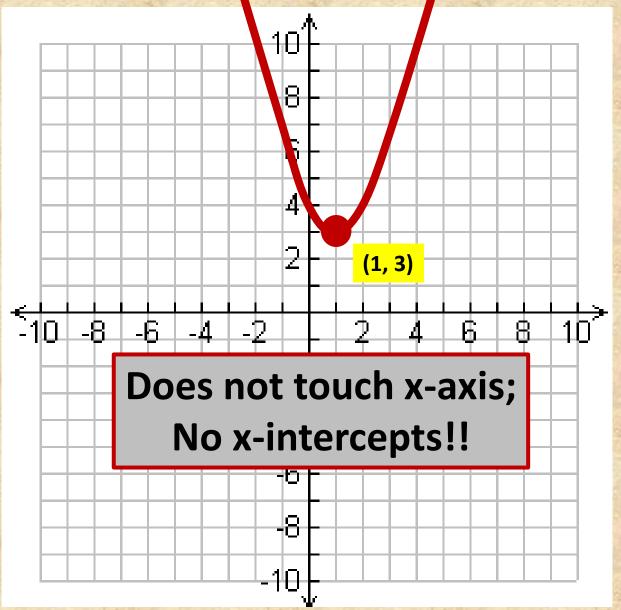

$$x = -\frac{-4}{2(2)} = +\frac{4}{4} = 1$$

$$F(1) = 2(1)^2 - 4(1) + 5 = 3$$

Since a = 2 (positive)
Opens UPWARD!

Vertex:


(1, 3)



Problem #34 (Sketch Graph):

Vertex: (1, 3)

Problem #34 CONT...

Graph the function. Find the vertex, y-intercept, and x-intercepts (if any).

34)
$$F(x) = 2x^2 - 4x + 5$$

$$F(0) = 2(0)^2 - 4(0) + 5 = 5$$

y-intercept: (0, 5)

y-intercept:
$$x = 0$$

$$x$$
-intercept: $y = 0$

$$x$$
-intercept: $y = 0$

$$2x^2 - 4x + 5 = 0$$

$$2x^2 - 4x + 5 = 0$$

Solve by quadratic formula!

$$2x^2 - 4x + 5 = 0$$

So
$$a = 2$$
, $b = (-4)$, $c = 5$

Problem #34 CONT...

Use Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
; Just plug in a, b, c

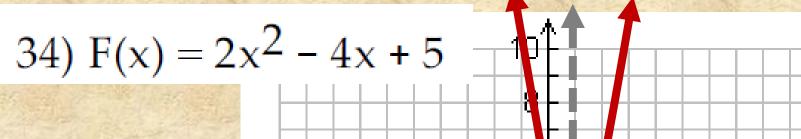
Quadratic Equation to solve:

$$2x^2 - 4x + 5 = 0$$

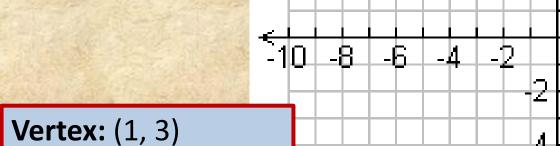
So a = 2, b = (-4), c = 5

$$x = \frac{-(-4)\pm\sqrt{(-4)^2-4(2)(5)}}{2(2)}$$

$$x = \frac{4 \pm \sqrt{-24}}{4}$$

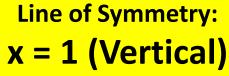

NO SOLUTION!

→ NO x-intercepts!


$$\sqrt{-24}$$
 = UNDEFINED!

Problem #34 CONT...

(0, 5)

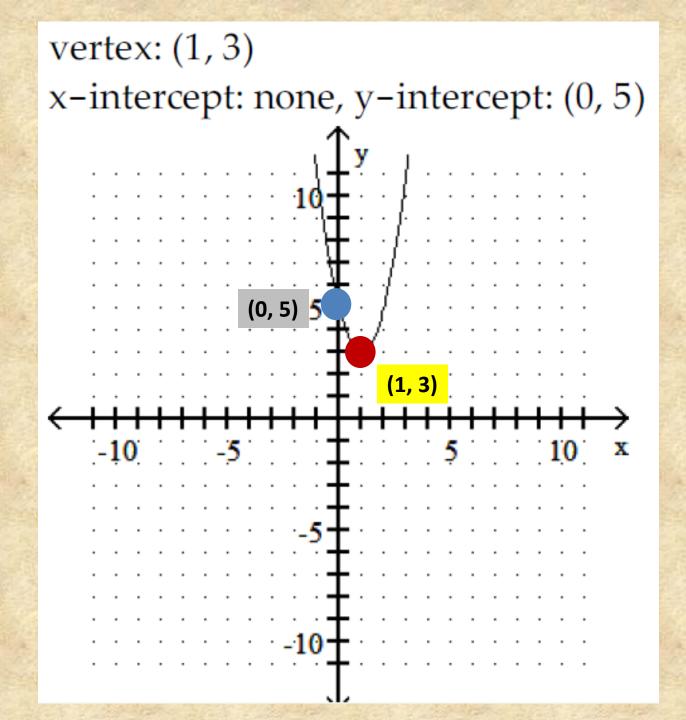


y-intercept: (0, 5)

Another point: (2, 5)

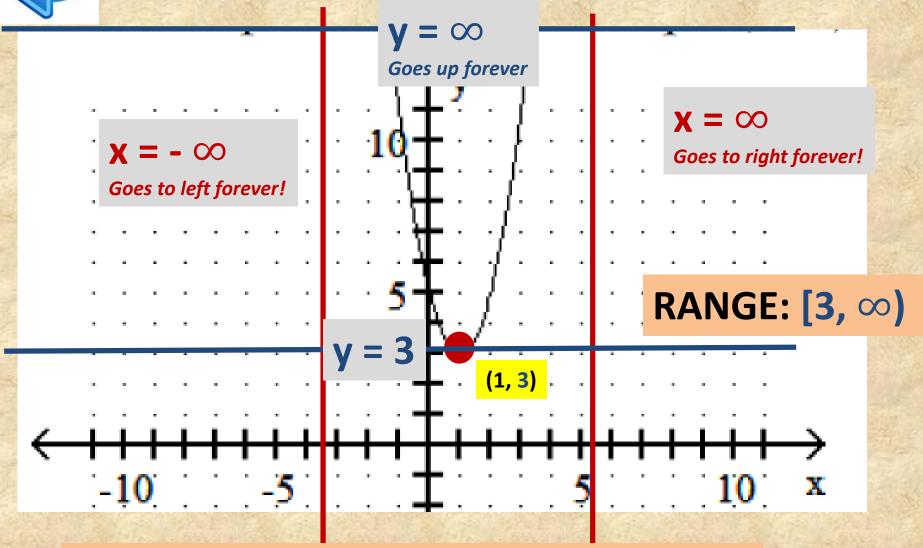
x-intercepts: NONE!

Opens UPWARD!


x = h of vertex (h, k)

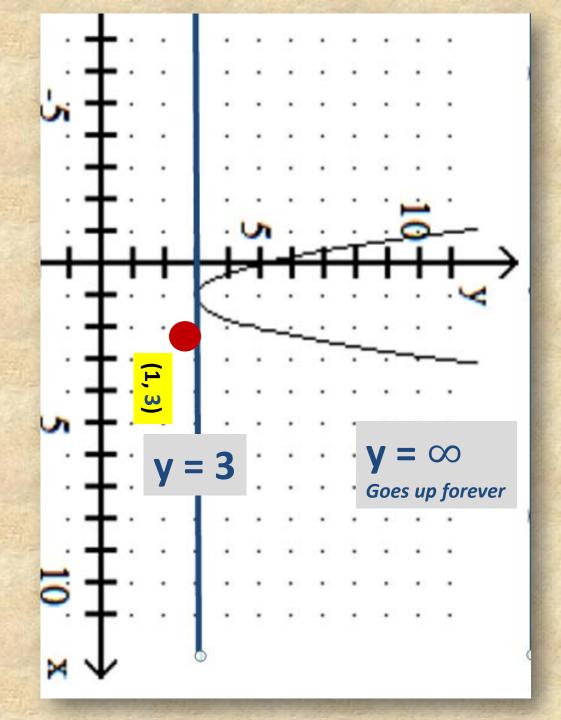
(2, 5)

(1, 3)



Problem #34
Solution:

Find Domain and Range for #34


DOMAIN: $(-\infty, \infty)$ OR All real numbers

Range Visualized:

RANGE:

 $[3,\infty)$

Problem #35 (Graphing Quadratics)

Sketch the graph of the quadratic function.

Give the vertex and axis of symmetry.

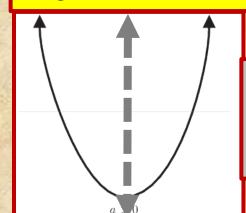
35)
$$f(x) = (x + 2)^2 - 5$$

$$f(x) = 1(x + 2)^2 - 5$$

Vertex = (-2, -5)

Vertex: (-2, -5)

Vertex form:


$$f(x) = a(x - h)^2 + k$$

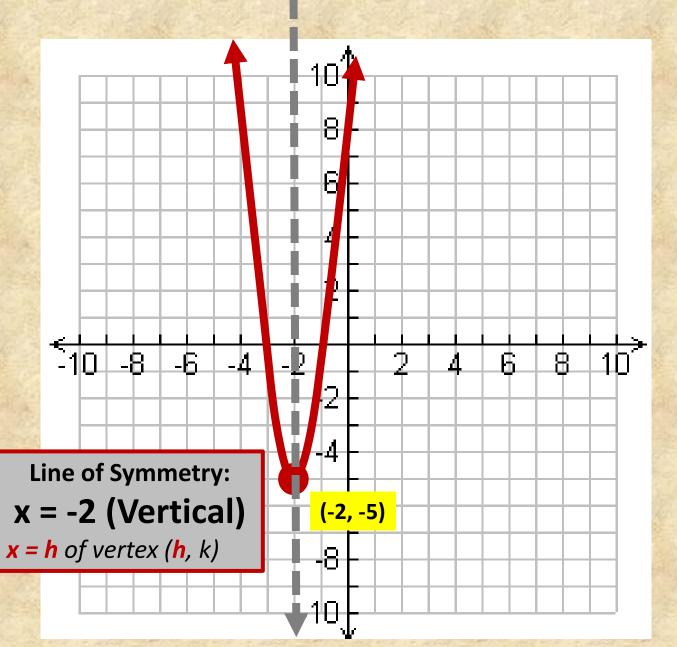
Vertex = (h, k)

x-coordinate: Opposite Sign

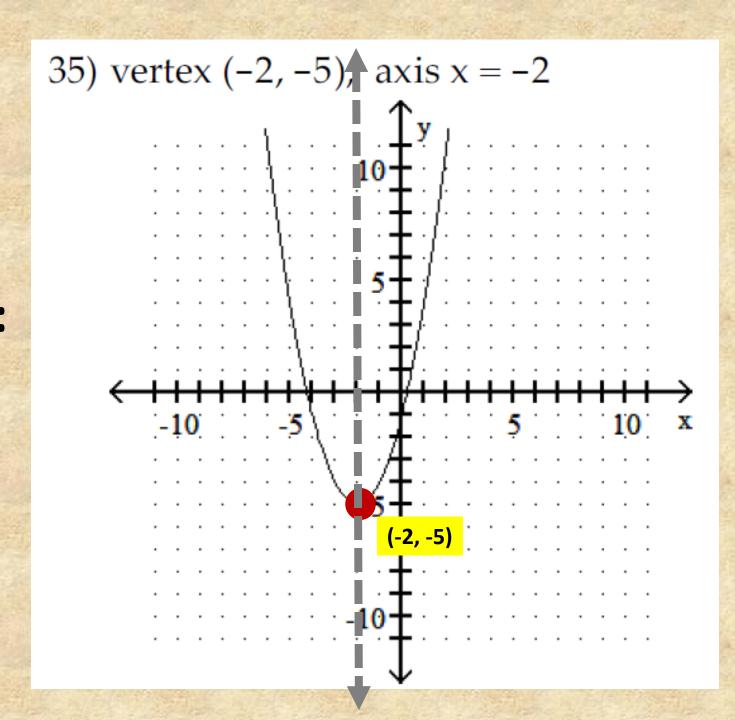
y-coordinate: Copy!

Since a = 1 (positive)
Opens UPWARD!

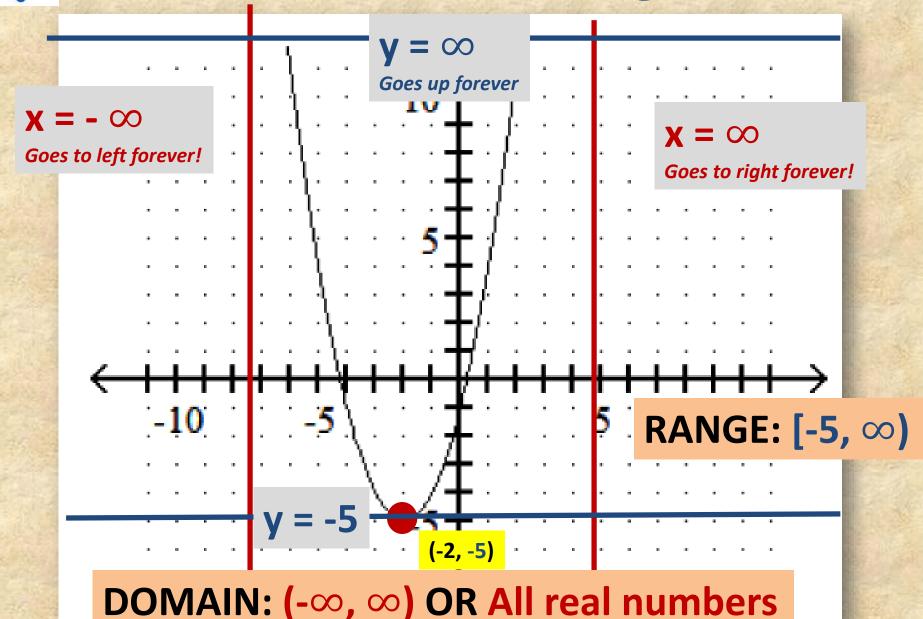
Line of Symmetry:


$$x = -2$$
 (Vertical)

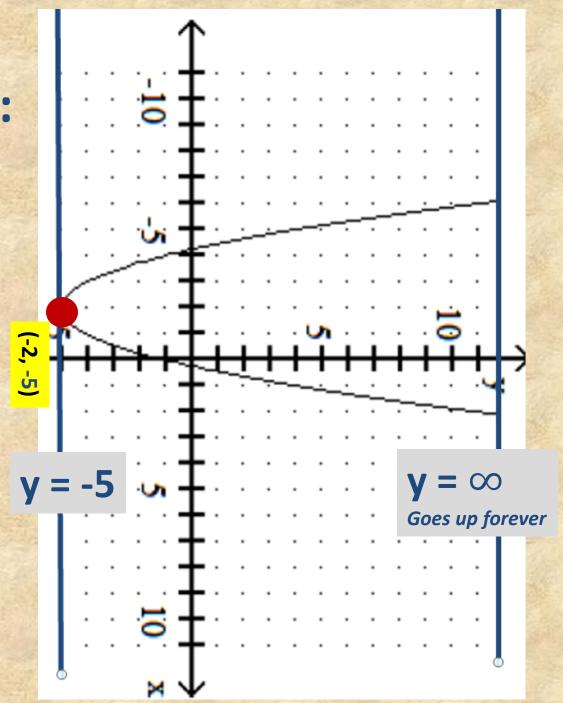
x = h of vertex (h, k)


Problem #35 CONT...

Vertex: (-2, -5) Opens UPWARD!



Problem #35 Solution:


Find Domain and Range for #35

Range Visualized:

RANGE: [-5, ∞)

Problem #36 (Graphing Quadratics)

Sketch the graph of the quadratic function.

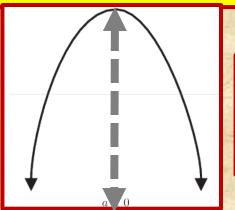
Give the vertex and axis of symmetry. **Vertex form:**

36)
$$f(x) = -(x - 3)^2$$

$$f(x) = -1(x - 3)^2 + 0$$

Vertex = (**3**, **0**)

Vertex: (-2, -5)

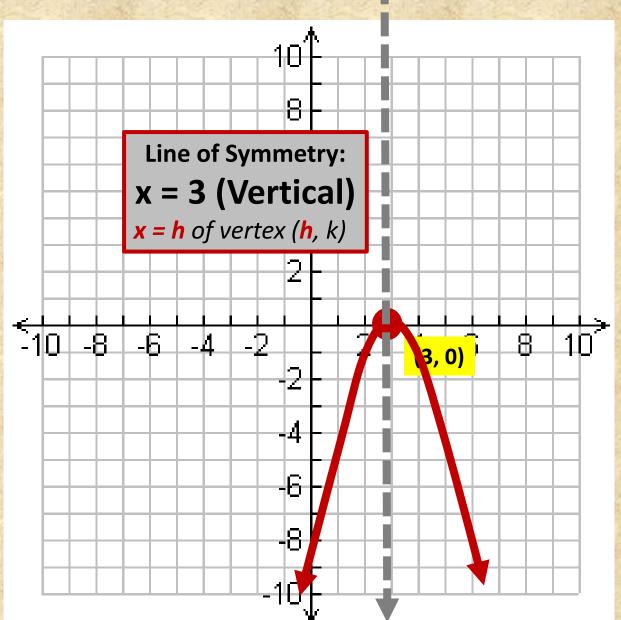

$$f(x) = a(x - h)^2 + k$$

Vertex = (h, k)

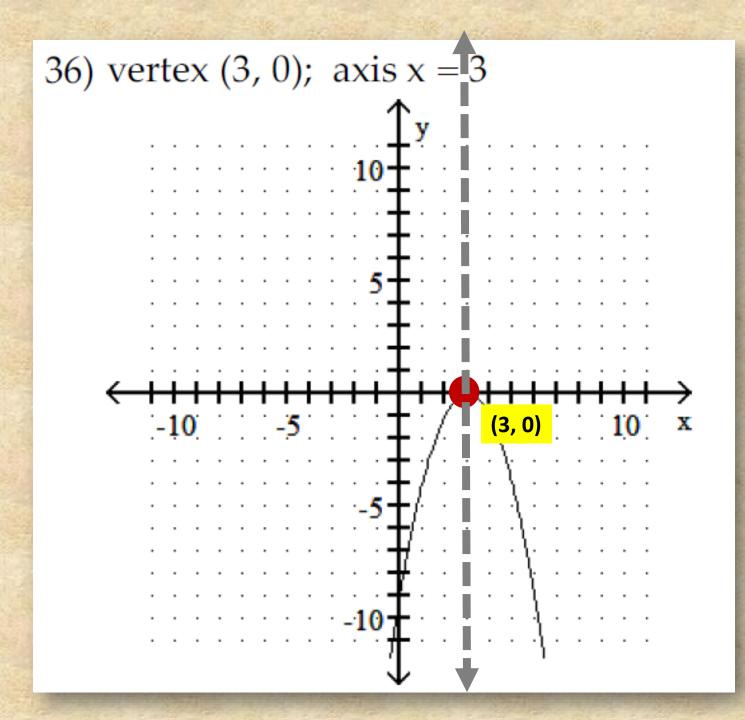
x-coordinate: Opposite Sign

y-coordinate: Copy!

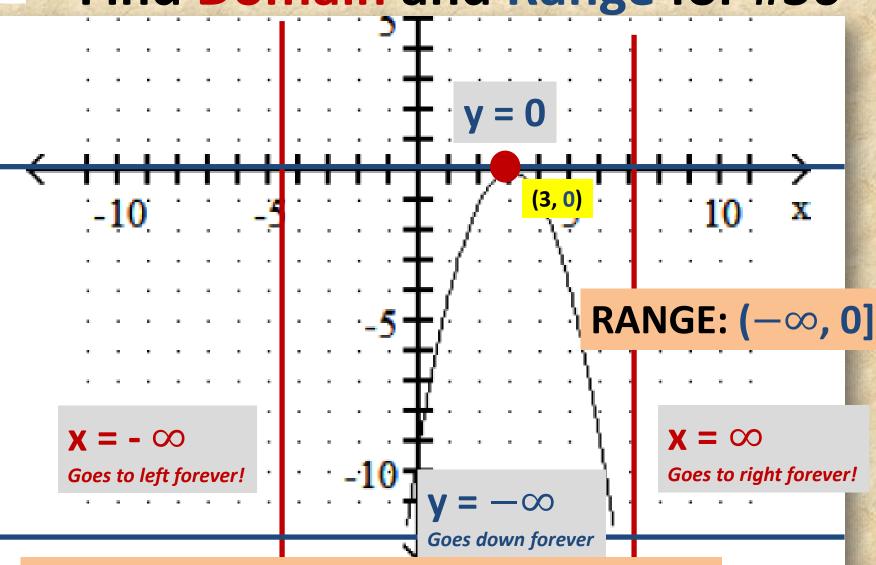
Since a = -1 (negative) **Opens DOWNWARDS!**


Line of Symmetry:

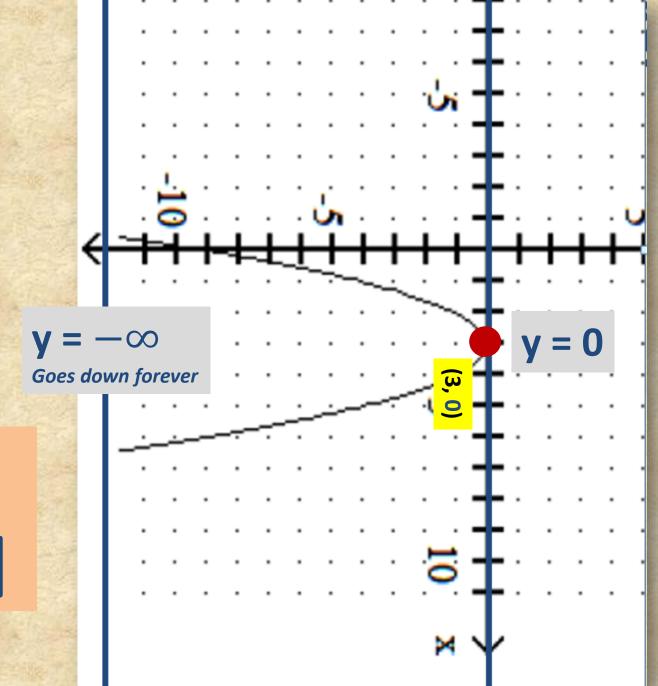
$$x = 3$$
 (Vertical)


Problem #36 CONT... 1

Vertex: (3, 0) Opens DOWN!



Problem #36 Solution


Find Domain and Range for #36

DOMAIN: $(-\infty, \infty)$ **OR All real numbers**

Range Visualized:

RANGE:

 $(-\infty,0]$

Problem #37 (Linear Graphing)

Graph the function by finding x- and y-intercepts.

37)
$$x + 2y = 8$$

y-intercept
$$(x = 0)$$
:

$$x + 2y = 8$$

$$9 + 2y = 8$$

$$2y = 8$$

$$y = 4$$

x-intercept (y = 0):

$$x + 2y = 8$$

$$x + 2(0) = 8$$

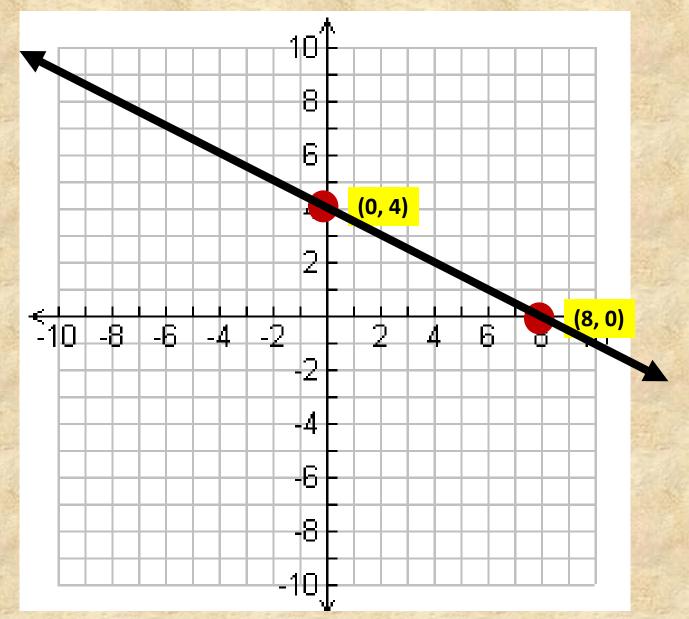
$$x = 8$$

X

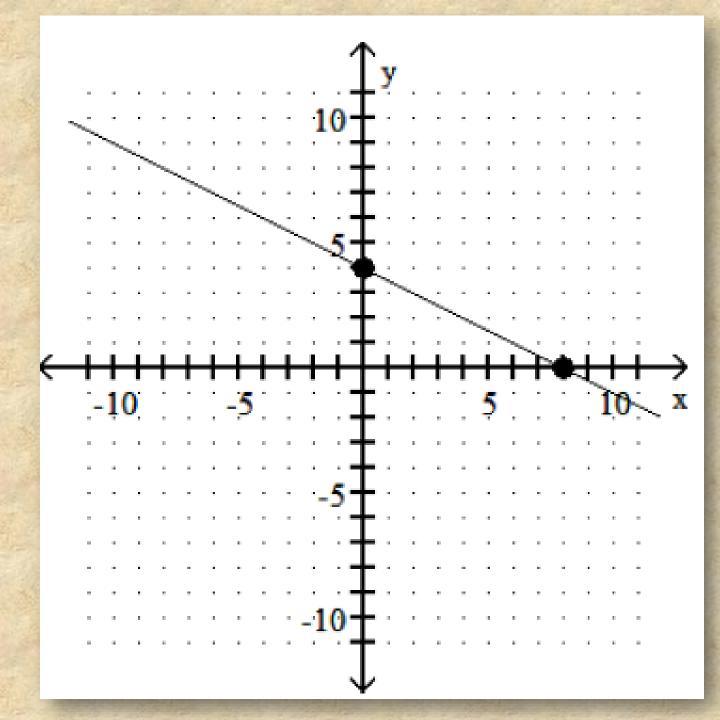
Y

(0,

4)


(8,

0


Problem #37 CONT... 37) x + 2y = 8

Problem #37
Solution:

Problem #38 (Linear Graphing)

Graph the equation.

38)
$$y = \frac{3}{4}x + 3$$

Make x-y table!

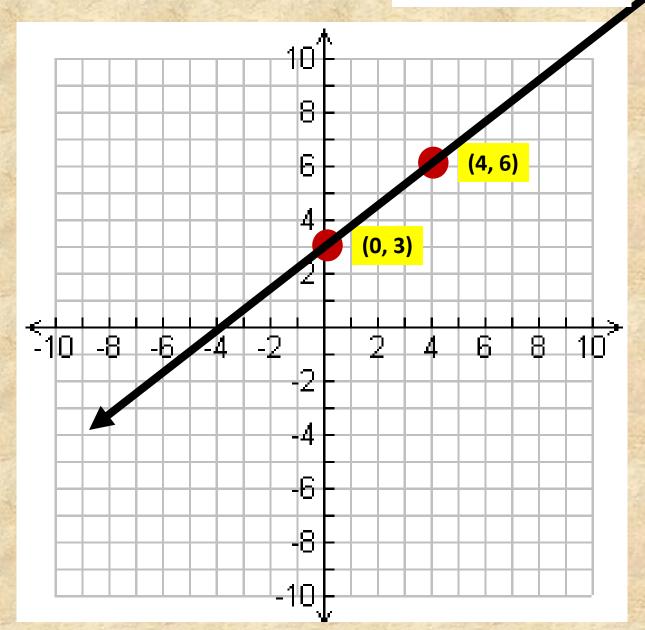
x y

(O, <mark>3)</mark>

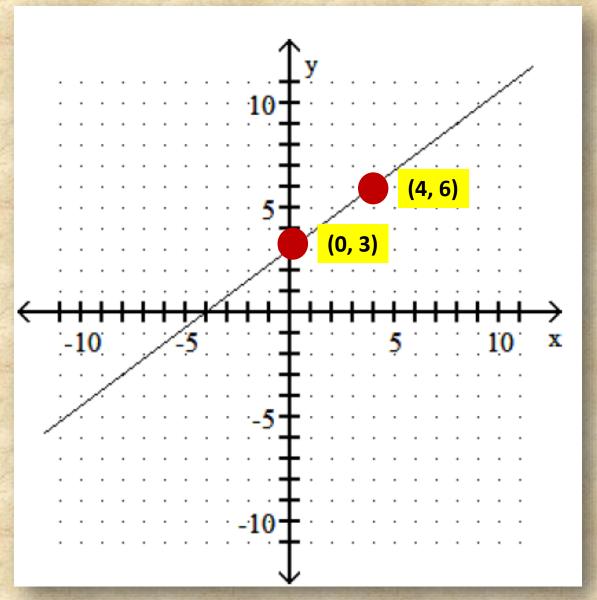
(4, <mark>6)</mark>

x = 0: $y = \frac{3}{4} + 3$

$$y = 3$$


x = 4: $y = \frac{3}{4} + 3$

Problem #38 CONT... 38) $y = \frac{3}{4}x + 3$


38)
$$y = \frac{3}{4}x + 3$$

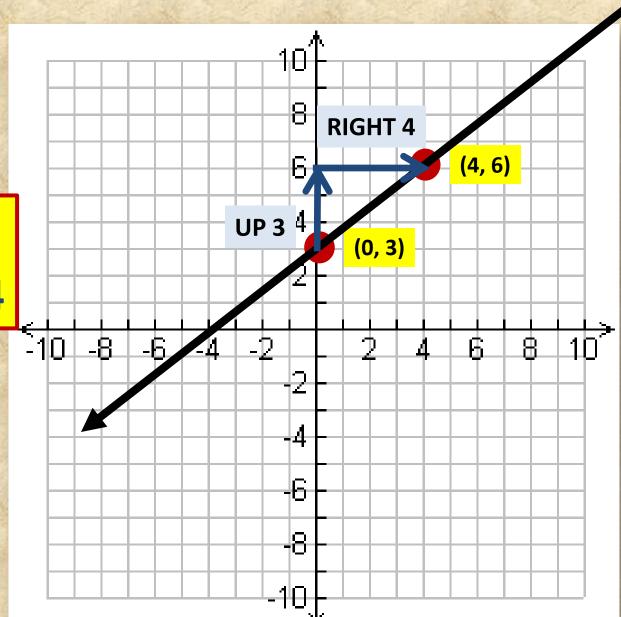
Solution for #38

Problem #38 (Alternative Method)

Graph the equation.

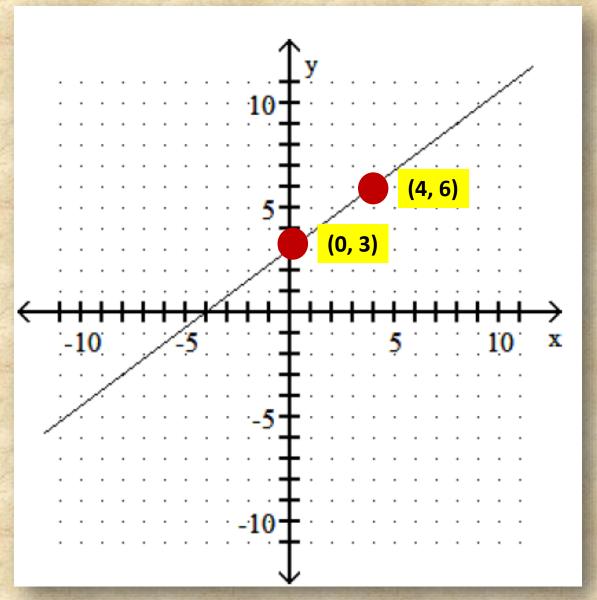
38)
$$y = \frac{3}{4}x + 3$$

$$y = \frac{3}{4}x + 3$$

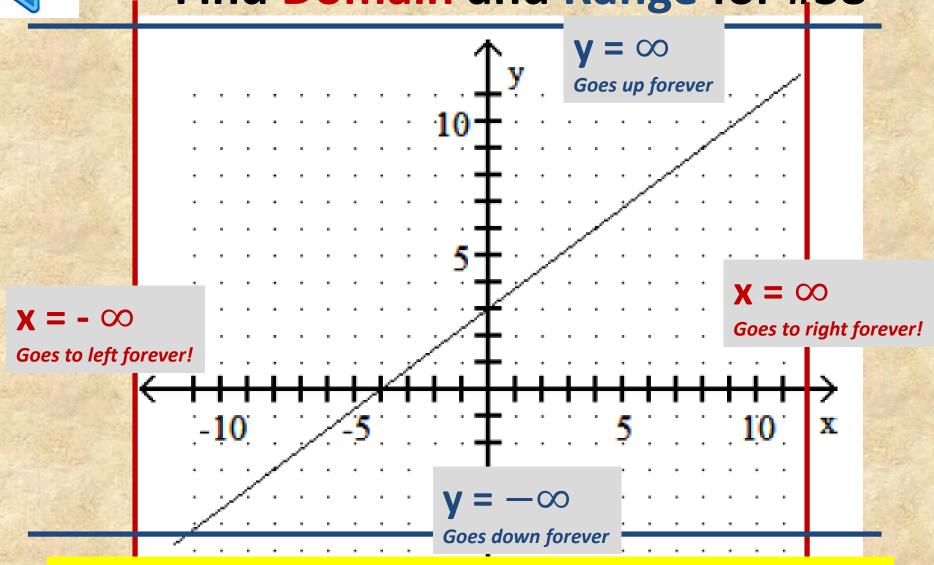

y-intercept: Slope =
$$\frac{3}{4}$$

(0, 3) Up 3, Right 4

Problem #38 Alternative CONT


y-intercept: (0, 3)

Slope = $\frac{3}{4}$ Up 3, Right 4



Solution for #38

Find Domain and Range for #38

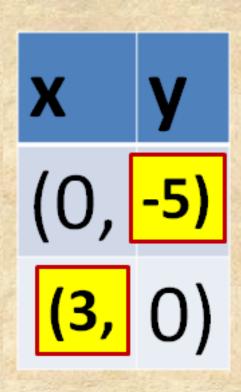
DOMAIN/RANGE: $(-\infty, \infty)$ **OR All real numbers**

Problem #39 (Linear Graphing)

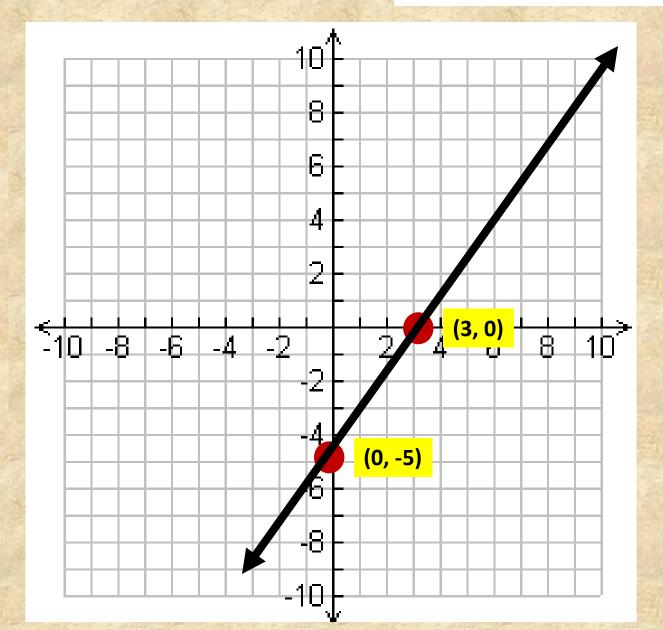
39)
$$-5x + 3y = -15$$

Find intercepts!

y-intercept (x = 0):

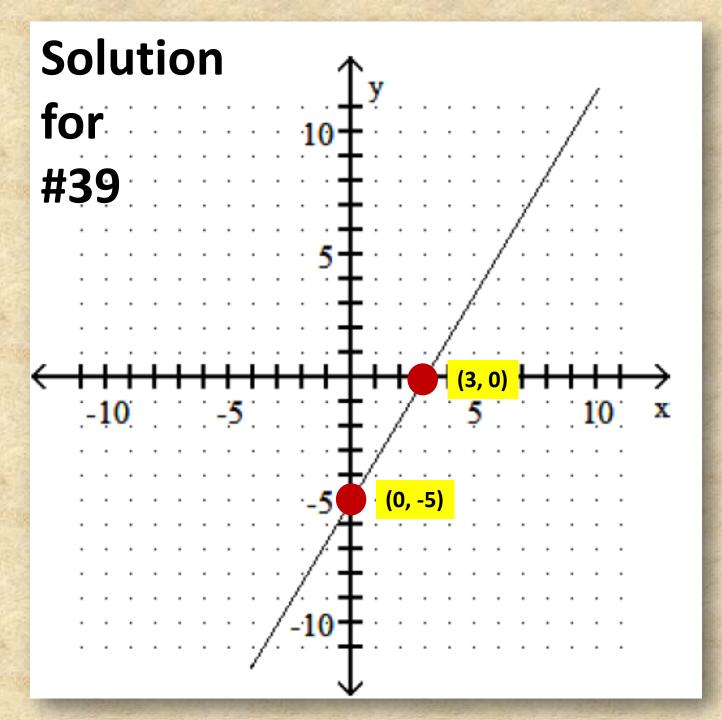

$$-5x + 3y = -15$$

 $-50 + 3y = -15$
 $3y = -15$
 $y = -5$

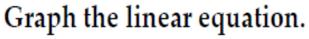

x-intercept (y = 0):

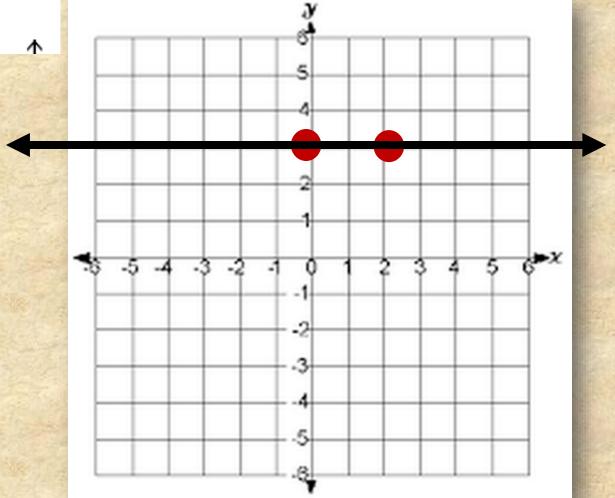
$$-5x + 3y = -15$$

 $-5x + 3(0) = -15$
 $-5x = -15$
 $x = 3$

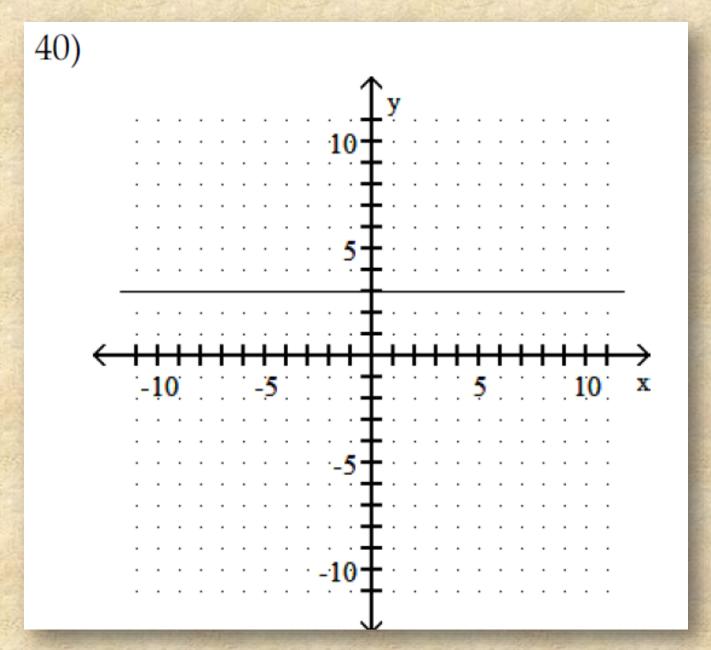


Problem #39 CONT... 39) -5x + 3y = -15



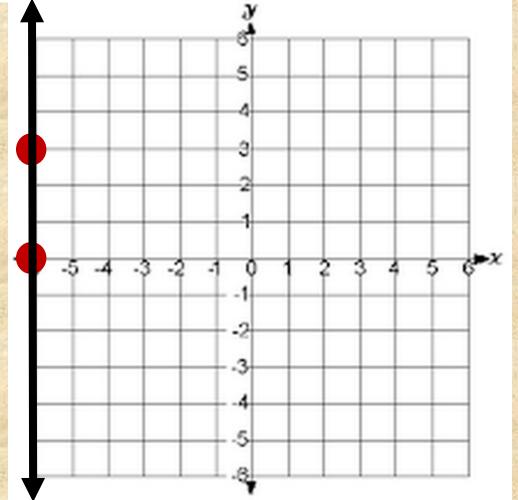


Problem #40 (Linear Graphing)


40)
$$y = 3$$

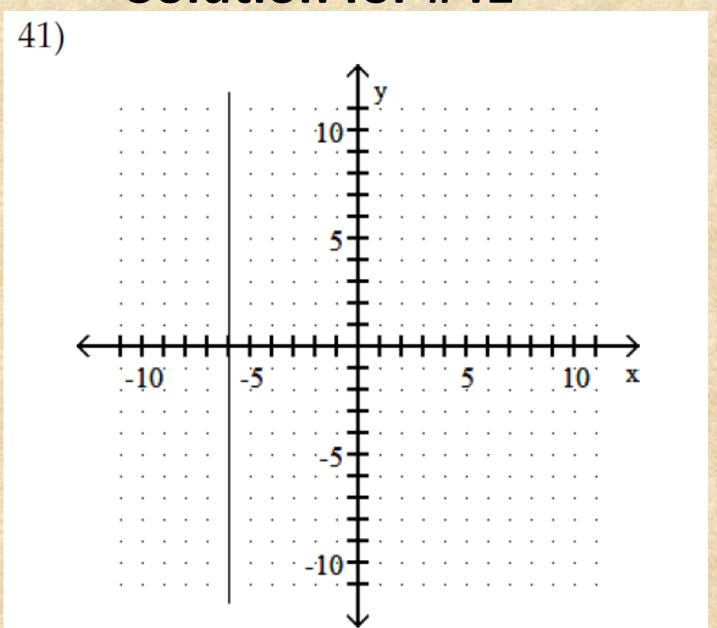
Horizontal line; y = k

Solution for #40



Problem #41 (Linear Graphing)

Graph the linear equation.


41)
$$x = -6$$

Vertical line; x = k

Solution for #41

Problem #42 (Slope-Intercept Form)

Write an equation of the line with the given slope and containing the given point.

Write the equation in the form y = mx + b

42) Slope -3; through (-7, -7)

Point-slope form:
$$y - y_1 = m(x - x_1)$$

$$y - (-7) = -3(x - 7)$$

$$y + 7 = -3(x + 7)$$

$$y + 7 = -3x - 21$$

$$y = -3x - 28$$

42)
$$y = -3x - 28$$

Problem #43 (Function Notation)

Find an equation of the line. Write the equation using function notation.

$$(x_2, y_2)$$
 and (x_1, y_1)

(9, 43) and (1, 11)

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{43 - 11}{9 - 1} = \frac{32}{8} = 4$$

Point-slope form: $y - y_1 = m(x - x_1)$

Choose (1, 11) for (x_1, y_1) and m = 4.

Problem #43 CONT...

43) Through (9, 43) and (1, 11)

Choose (1, 11) for (x_1, y_1) and m = 4.

$$y - 11 = 4(x - 1)$$
 $y - 11 = 4x - 4$
 $+11$
 $y = 4x + 7$
 $f(x) = 4x + 7$

43) f(x) = 4x + 7

Problem #44 (Graphing Inequalities)

Graph the solution of the system of linear inequalities.

$$44) \begin{cases} y < 2x + 6 \\ y \ge x - 8 \end{cases}$$

Notes:

<, >: Dotted Line

<, >: Solid Line

Notes:

y > mx + b

Shade **Above** Line

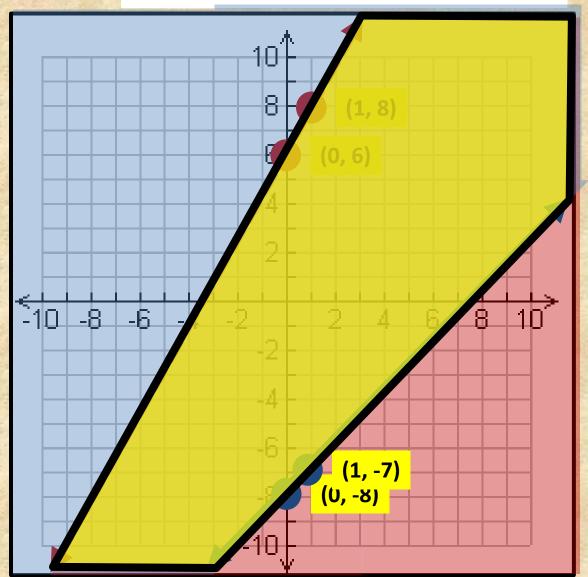
y < mx + b

Shade **Below** Line

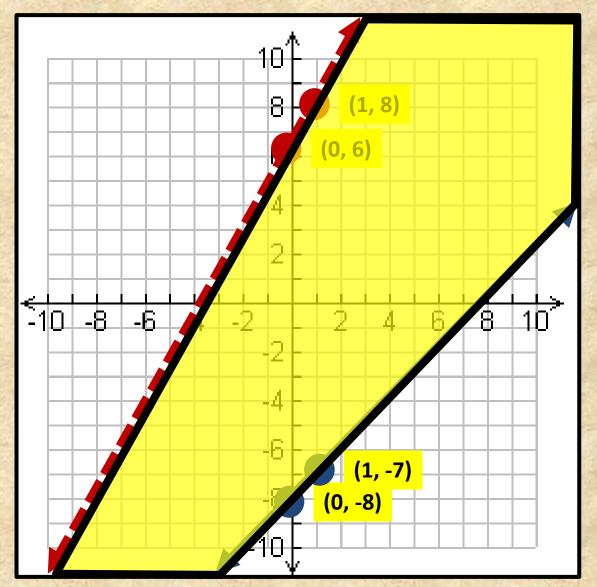
Graph:

y < 2x + 6; Dotted Line/Below

y > x - 8; Solid Line/Above

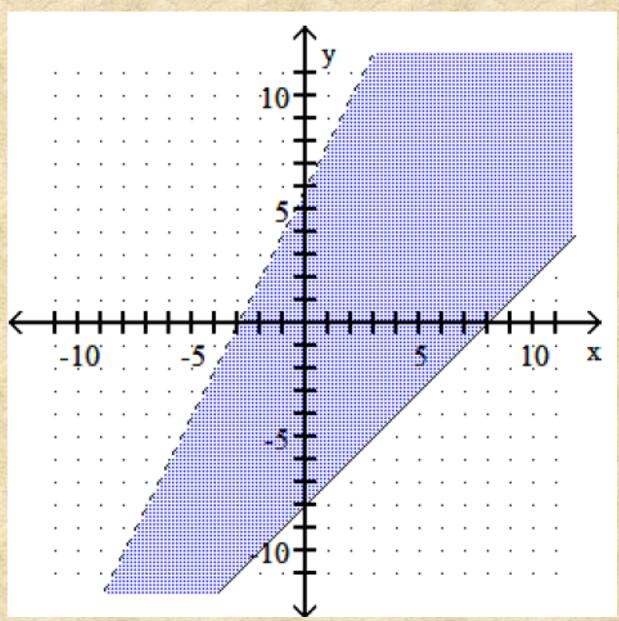

Problem #44 CONT...

For y < 2x + 6: y-intercept = (0, 6) Slope = 2 (Go up 2, over by 1)


For y > 1x - 8: y-intercept = (0, -8) Slope = 1 (Go up 1, over by 1)

Graph:

y < 2x + 6; Dotted Line/Below y $\ge x - 8$; Solid Line/Above



Problem #44 FINAL SOLUTION

Problem #44 Solution

Problem #45 (Systems of Equations)

45) University Theater sold 491 tickets for a play. Tickets cost \$25 per adult and \$13 per senior citizen. If total receipts were \$8195, how many senior citizen tickets were sold?

Let x = number of adult tickets Let y = number of senior citizens tickets

Set-Up:

$$x + y = 491$$
 tickets

$$$25x + $13y = $8195$$

Solve for y (Substitution):

$$y + y = 491 - x$$

$$y = (491 - x)$$

Solve: 25x + 13(491 - x) = 8195

$$25x + 6383 - 13x = 8195$$

Problem #45 CONT...

45) University Theater sold 491 tickets for a play. Tickets cost \$25 per adult and \$13 per senior citizen. If total receipts were \$8195, how many senior citizen tickets were sold?

$$25x + 6383 - 13x = 8195$$

$$12x + 6383 - 8195$$

$$6382 - 6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

$$-6383$$

x = 151 adult tickets

Problem #46 (Systems of Equations)

46) The manager of a bulk foods establishment sells a trail mix for \$5 per pound and premium cashews for \$15 per pound. The manager wishes to make a 75-pound trail mix-cashew mixture that will sell for \$13 per pound. How many pounds of each should be used?

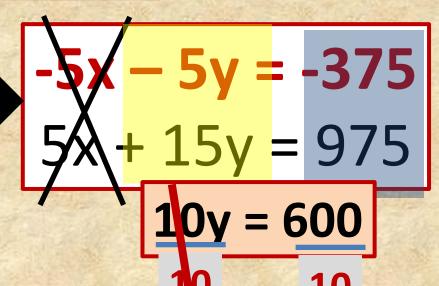
Let x = pounds of trail mix Let y = pounds of cashew

Set-Up:

Solve (elimination):

$$x + y = 75$$

$$5x + 15y = 975$$


Problem #46 CONT....

We will eliminate x

$$-5(x + y = 75)$$

 $5x + 15y = 975$

$$x + y = 75$$
 $x + 60 = 75$
 $-60 = -60$

x = 15 poundsof trail mix

y = 60 pounds of cashew

46) 15 pounds of trail mix 60 pounds of cashews

Problem #47 (Rational Equations)

Solve the equation.

47)
$$\frac{1}{x+4} - \frac{7}{x-4} = \frac{4}{x^2 - 16}$$

$$\rightarrow$$
 (x + 4)(x - 4)

$$\frac{1}{(x+4)} - \frac{7}{(x-4)} = \frac{4}{(x+4)(x-4)}$$

Restrictions: Denominator ≠ **0**

$$x + 4 \neq 0$$

Solve:

Solve: Solve:
$$x + 4 \neq 0$$
 $x - 4 \neq 0$

$$x \neq 4$$

Drop all solutions where $x = \{-4, 4\}$

Problem #47 CONT.

$$LCD = (x + 4)(x - 4)$$

$$\frac{1}{(x+4)(x-4)} - \frac{7}{(x+4)(x+4)} = \frac{4}{(x+4)}$$

$$\frac{1}{(x+4)} - \frac{7}{(x+4)} = 4$$

$$\frac{1}{(x+4)} - \frac{7}{(x+4)} = 4$$

$$\frac{1}{(x-4)} - \frac{3}{(x+4)} = 4$$

$$\frac{1}{(x+4)} - \frac{3}{(x+4)} = 4$$

$$\mathbf{x} = -\mathbf{6}$$
No extraneous solutions!

· (x 1 1)(x

Problem #48 (Rational Equations)

Solve the equation.

48) 1 +
$$\frac{1}{x} = \frac{12}{x^2}$$

Factor: x² → xx

$$1 + \frac{1}{x} = \frac{12}{xx}$$

Restrictions: Denominator ≠ **0**

Drop all solutions where x = {0}

Problem #48 CONT... LCD = x² (xx)

$$LCD = x^2 (xx)$$

$$1 \cdot xx + \frac{1}{x} \cdot xx = \frac{12}{xx}$$

$$x^2 + 1x = 12$$
 Make equation = 0

$$-12$$
 -12

$$(x + 4)(x - 3) = 0$$

$$x = \{-4, 3\}$$
No extraneous solutions!

Problem #49 (Rational Equations)

Solve the equation.

49)
$$\frac{x+5}{x^2+3x-4} - \frac{5}{x^2-2x+1} = \frac{x-5}{x^2+3x-4}$$
 Factor: $x^2+3x-4 \rightarrow (x+4)(x-1)$ $x^2-2x+1 \rightarrow (x-1)(x-1)$

$$x^{2} + 3x - 4 \rightarrow (x + 4)(x - 1)$$

 $x^{2} - 2x + 1 \rightarrow (x - 1)(x - 1)$

$$\frac{(x+5)}{(x+4)(x-1)} - \frac{5}{(x-1)(x-1)} = \frac{(x-5)}{(x+4)(x-1)}$$

Restrictions: Denominator # 0

Solve:

$$x + 4 \neq 0$$

$$x \neq -4$$

Solve:

$$x-1\neq 0$$

$$x \neq 1$$

Drop all solutions where $x = \{-4, 1\}$

oblem #49 CONT.

$$LCD = (x + 4)(x - 1)(x - 1)$$

$$(x+5) \xrightarrow{(x-1)}$$

$$\begin{array}{c}
\cdot (x+4) \\
(x-1) \\
(x-1)
\end{array}$$

$$(x-5)$$
 $(x-1)$

$$(x+1)(x-1)$$

$$(x-1)(x-1)$$

$$(x+4)(x-1)$$

$$(x+5)(x-1)-5(x+4)=(x-5)(x-1)$$

FOIL!

DISTRIBUTE!

FOIL!

$$x^2 - 1x + 5x - 5$$

$$-5x - 20$$

$$= x^2 - 1x - 5x + 5$$

$$x^2 - 1x + 5x - 5 > 5x - 20 = x^2 - 1x - 5x + 5$$

$$x^2 - 1x - 25 = x^2 - 6x + 5$$

Problem #49 CONT...

$$-1x - 25 = x^2 - 6x + 5$$

$$-1x - 25 = -6x + 5$$

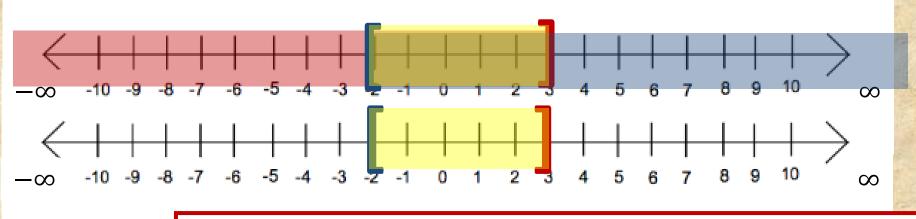
$$5x - 25 = 5$$
 $+25 + 25$

Back to

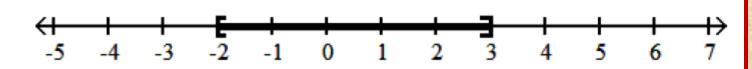
Menu

$$\frac{5x}{5} = \frac{30}{5}$$

No extraneous solutions!


Problem #50 (Compound Inequalities)

Solve the compound inequality. Graph the solution set.


50)
$$x \le 3$$
 and $x \ge -2$

Intersection ONLY!

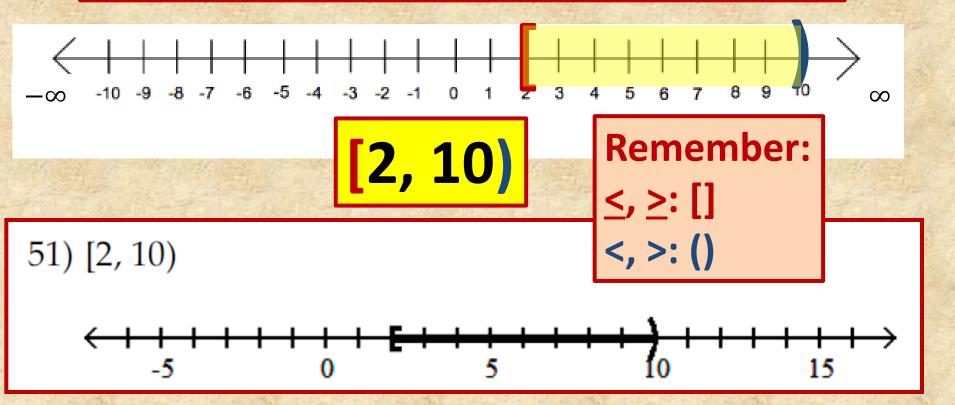
$$x \ge -2$$
 (Shade right)

Problem #51 (Compound Inequalities)

Solve the compound inequality. Graph the solution set.

$$51) \ 11 \le \frac{5}{2}x + 6 < 31$$

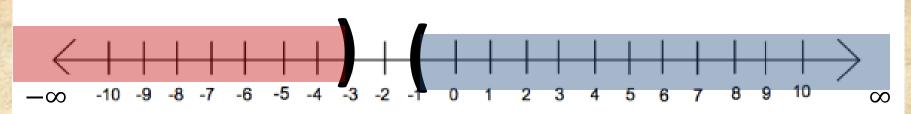
$$11 \cdot 2 \le \frac{5}{2}x + 6 \cdot 2 < 31 \cdot 2$$


$$22 \le 5x + 12 < 62$$
 -12
 -12
 -12

2 < x < 10 x is between 2 and 10!

Problem #51 (Compound Inequalities)

2 ≤ x < 10; *x is between 2 and 10!*


Problem #52 (Compound Inequalities)

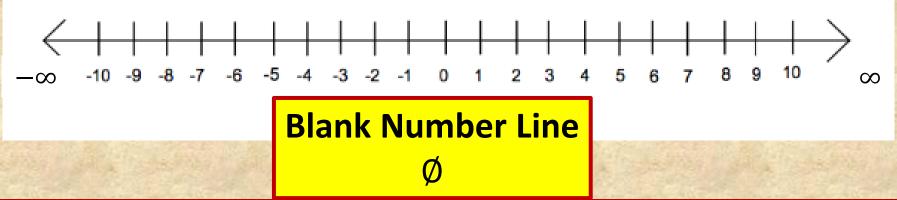
Solve the compound inequality. Graph the solution set.

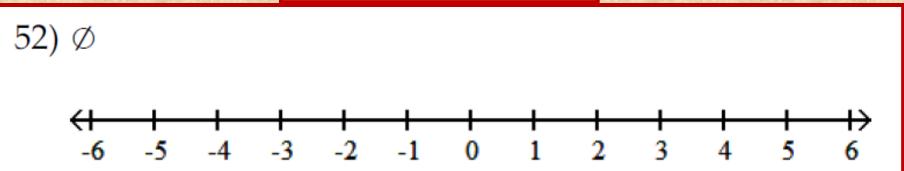
52)
$$x + 4 < 1$$
 and $-4x < 4$

$$x + 4 < 1$$
 $-4x < 4$
 -4
 $x < -3$
 $x > -1$

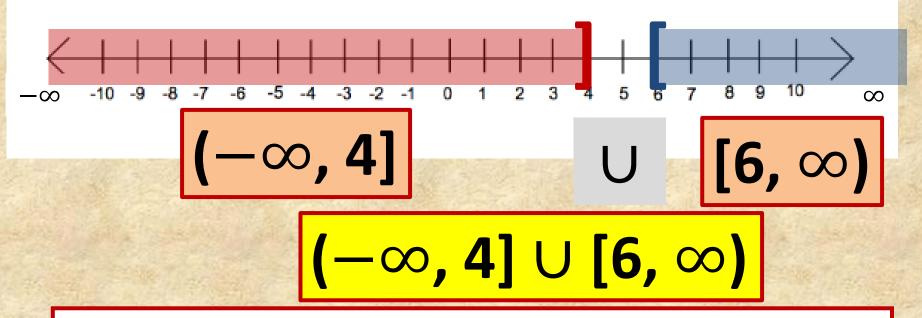
Intersection ONLY!

There is no intersection/overlap!


→ NO SOLUTION!

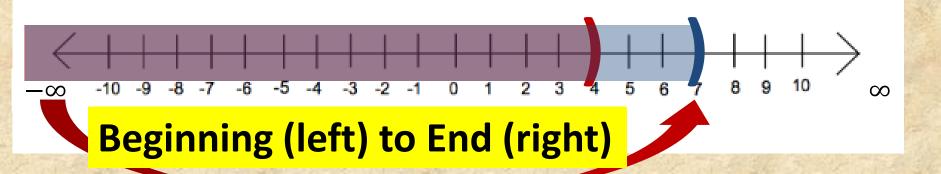

Sign Flipped!

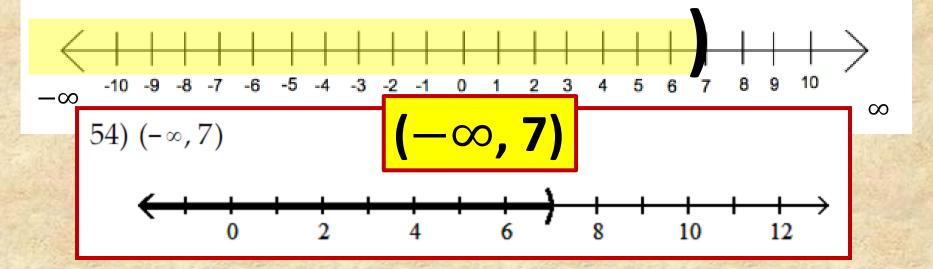
Problem #52 Solution



Problem #53 (Compound Inequalities)

Solve the compound inequality. Graph the solution set.


53)
$$x \le 4$$
 or $x \ge 6$



Problem #54 (Compound Inequalities)

Solve the compound inequality. Graph the solution set.

54)
$$x < 4$$
 or $x < 7$

Problem #55 (Compound Inequalities)

Solve the compound inequality. Graph the solution set.

55)
$$-5x + 1 \ge 11$$
 or $3x + 3 \ge -9$

$$-5x + 1 \ge 11$$

$$-5x \ge 10$$

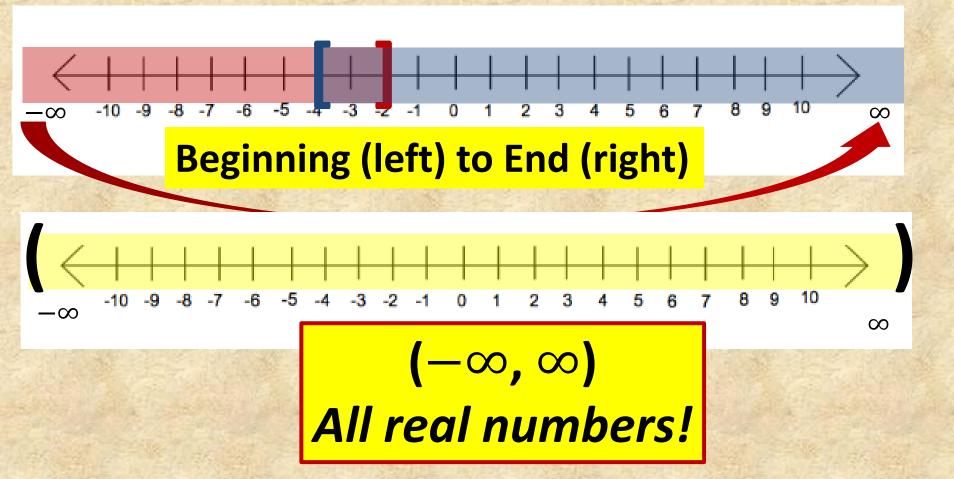
$$3x + 3 \ge -9$$

$$3x > -12$$

$$x \ge -4$$

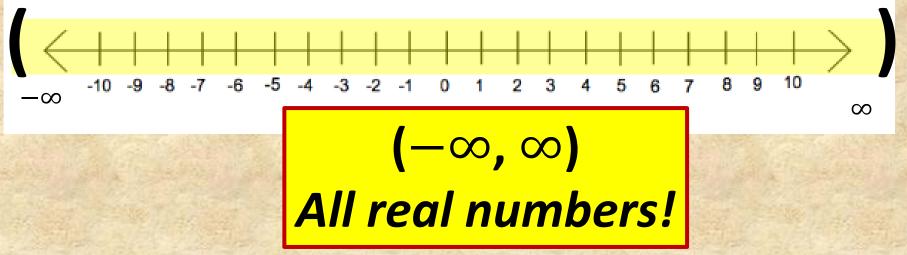
$$x \le -2$$
 or $x \ge -4$

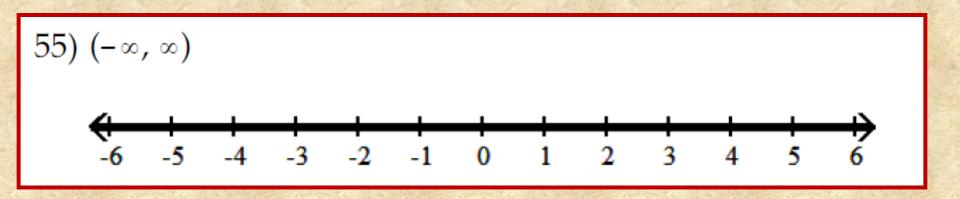
Beginning to end!



Problem #55 CONT...

55)
$$-5x + 1 \ge 11$$
 or $3x + 3 \ge -9$


$$x \le -2$$
 or $x \ge -4$


Beginning to end!

Problem #55 CONT...

Other Topics to Study:

- Functions, Domain/Range
- Midpoint and Distance Formula Problems
- Pythagorean Theorem
- Work Word Problems
- Review Factoring!
- Review Basic Graphing!
- Review Solving Equations and Simplifying Expressions

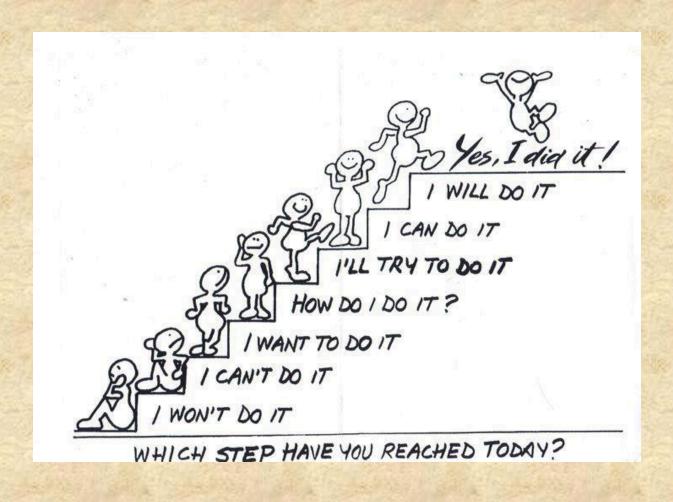
Helpful Study Tips:

- 1) The final is cumulative and you should study the course materials beyond this workshop!
- 2) The final exam is made by your individual instructor. Use any study guide/tips provided by your instructor.
- 3) Study your lab project worksheets and lab assessment.
- 4) Study previous class exams and quizzes!
- 5) Of course, study and review your homework assignments!

Helpful Study Tips:

6) Visit the Math Connections for additional support and resources!

Study a little each day, DO NOT CRAM!!


General Test Taking Tips:

- 1) Preview the exam and do the problems that are easy and you are familiar with.
- 2) Pace yourself... do not spend too much time on any 1 problem.
- 3) DO NOT RUSH!
- 4) Go back and check your answers (if time allows).
- 5) Follow instructions carefully!
- 6) Double check your work!

Review your exam before you submit it!

Now go study and do well on your final exam!

