

## MAT 0022C/0028C Final Exam



## Review

BY:


West Campus Math Center

Math connections


## Topics

- Factoring
- \#1, $\underline{2}, \underline{3}, \underline{4}, \underline{5}, \underline{6}, \underline{7}, \underline{8}, \underline{9}, \underline{10}, \underline{11}, \underline{12}, \underline{13}, \underline{14}, \underline{15}, \underline{16}, \underline{17}, \underline{18}$
- Problem Solving (Word Problems)
- \#19, $\underline{20}, \underline{21}, \underline{22}, \underline{23}, \underline{24}, \underline{25}, \underline{26}, \underline{27}, \underline{66}, \underline{67}, \underline{68}, \underline{69}, \underline{70}$
- Graphing
- \#28, 29, 30, 31, 32, 33, $\underline{34}, \underline{35}$
- Exponents and Polynomials
- \#36, $\underline{37}, \underline{38}, \underline{39}, \underline{40}, \underline{41}, \underline{42}, \underline{43}, \underline{44}, \underline{45}$
- Square Roots/Radicals
- \#46, 47, 48, 49, ㄷ, 51, $\underline{68}$
- Equations and Inequalities
- \#52, $\underline{53}, \underline{54}, \underline{55}, \underline{56}, \underline{57}, \underline{58}, \underline{59}, \underline{60}, \underline{61}, \underline{62}, \underline{63}, \underline{64}, \underline{65}$,
- Test Taking Tips
- MyMathLab Tips, How to study, General Test Taking Tips


## Problem \#1, 2, 3 (GCF) <br> 1) 2 <br> 2) $15 \mathrm{~m}^{5}$ <br> 3) $44 x^{2}$

Find the GCF for the list.

$$
\begin{array}{ll}
\text { 1) } 16,10 & \text { 1) GCF = 2 } \\
\text { 2) } 15\left(\mathrm{~m} 5,135 \mathrm{~m}^{9}\right. & \text { 2) GCF }=\mathbf{1 5} \mathrm{m}^{\mathbf{5}} \\
\text { 3) } 88\left(\mathrm{x}^{2}, 44 \mathrm{x}^{7}\right. & \text { 3) GCF }=\mathbf{4 4 \mathbf { x } ^ { 2 }}
\end{array}
$$

Remember GCF for like variables = smallest exponent
EXAMPLE: GCF for $x^{5}, x^{3}=x^{3}$ (pick smallest exponent)

# Factoring Trinomials (Leading Coefficient = 1) 

Form: $x^{2}+b x+c$
Signs could be + or - in the trinomial.
Form: $x^{2}+b x+c$

## Factored Form: (x )(x )



# Problem \#4 (Factoring Trinomials) 

Factor the trinomial completely. If the polynomial cannot be factored, write "prime."


## Factored Form: (x )(x )

## Find factors of $\mathbf{2 0}$ that subtract to make 8.



Sign of bigger factor matches middle term bx

## Solution: $(x+2)(x-10)$

## Problem \#5 (Factoring Trinomials)

Factor the trinomial completely. If the polynomial cannot be factored, write "prime."

$$
\text { 5) } x^{2}-3 x-40
$$

$$
\text { 5) }(x-8)(x+5)
$$

## Factored Form: (x )(x )

## Find factors of 40 that subtract to make 3.



Sign of bigger factor matches middle term bx

220

Solution: $(x+5)(x-8)$

## Problem \#6 (Factoring)

Factor the four-term polynomial by grouping.


$$
(y+6)(x-3)
$$

6) $(y+6)(x-3)$

## Problem \#7 (Factoring)

Factor the four-term polynomial by grouping.


$$
(x-2 z)(y+7) \quad 7)(y+7)(x-2 z)
$$

## Problem \#8 (Factoring)

Factor the four-term polynomial by grouping.

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { 8) } 10 x^{2}-8 x \\
10 x^{2}-8 x
\end{array}\right|^{15 x+12}-15 x+12 \\
& \text { GCF }=2 x \quad \text { GCF }=-3 \\
& 2 x(5 x-4) \\
& (5 x-4)(5 x-4) \\
& (5 x-4)(2 x-3) \\
& (5 x-3) \\
& (2 x-3)(5 x-4)
\end{aligned}
$$

## Factoring Trinomials

 (Leading Coefficient $a \neq 1$ )
## Form: $a x^{2}+b x+c$

Signs could be + or - in the trinomial.

## 2 methods:

1) A•C method 2) Guess-and-check We will illustrate both methods.


SIGN RULES (For all Factoring Methods)


Sign of
Bigger Factor Matches Middle
Term
bx

## Problem \#9 (Factoring - AC method)

Factor the trinomial completely.
-168
9) $8 x^{2}+17 x-21$

Find factors of $\mathbf{1 6 8}$ that subtract to make 17.

Sign of bigger factor matches middle term $b x$

4 terms: $8 x^{2}+24 x-7 x-21$
We now factor by grouping!

## Problem \#9 CONT...

Factor the trinomial completely.
9) $8 x^{2}+17 x-21$

4 terms: $8 x^{2}+24 x-7 x-21-7+24$

$$
\begin{gathered}
8 x^{2}+24 x-7 x-21 \\
\text { CF }=8 \mathrm{x} \\
\hline \mathrm{GCF}=-7 \\
(8 x+3) \\
(x+3) \\
(x+3) \\
(8 x-7)
\end{gathered}
$$

$$
(x+3)(8 x-7)
$$

9) $(x+3)(8 x-7)$

## Problem \#10

## (Factoring - Guess/check method)

Factor the trinomial completely.
10) $16 y^{2}-24 y+9$


$$
(4 y-3)(4 y-3)
$$



$$
(4 y-3)^{2}
$$

SAME SIGNS,

## Match Middle Term!

$$
\text { 10) }(4 y-3)(4 y-3)
$$

## Problem \#11 (Factoring - AC method)

Factor the triy omiar eompletely.
-144

$$
\text { 11) } 12 x^{2}-7 x-12
$$

Find factors of 144 that subtract to make 7.

Sign of bigger factor matches middle term $b x$

4 terms: $12 x^{2}+9 x-16 x-12$
We now factor by grouping!

## Problem \#11 CONT...

Factor the trinomial completely.
-144

$$
\text { 11) } 12 x^{2}-7 x-12
$$

4 terms: $12 x^{2}+9 x-16 x-12$


$$
\begin{aligned}
& 12 x^{2}+9 x \mid-16 x-12 \\
& \mathrm{GCF}=3 \mathrm{x} \mid \mathrm{GCF}=-4 \\
& 3 \mathrm{3x}(4 x+3)-4)(4 x+3) \\
& (4 x+3)(3 x-4) \\
& (4 x+3)(3 x-4)(11)(4 x+3)(3 x-4)
\end{aligned}
$$

## Problem \#12 (Factoring)

Factor the trinomial completely.

$$
\text { 12) } x^{2} \Theta 12 x+36
$$

## Factored Form: (x )(x

$$
+36
$$

Find factors of 36 that add to make 12.
SAME SIGNS, Match Middle Term!
Solution: $(x+6)(x+6)=(x+6)^{2}$

$$
\text { 12) }(x+6)^{2}
$$



## Problem \#13 (Factoring)

Factor the trinomial completely.


## Factoring Difference of Squares

Form: $a^{2}-b^{2}$
Factored Form: $(\mathbf{a}+\mathbf{b})(\mathbf{a}-\mathbf{b})$
where $a$ and $b$ are square roots.


## Problem \#14 (Difference of Squares)

Factor the binomial completely.

$$
\text { 14) } 4 x^{2}-25
$$

Factored Form: ( + )( - )
Solution: $(2 x+5)(2 x-5)$

| Perfect square | Square root |
| :---: | :---: |
| $\sqrt{1}=1$ |  |
| $4 \quad \sqrt{4}=2$ |  |
| 9 | $\sqrt{9}=3$ |
| $16 \quad \sqrt{16}=4$ |  |
| $25 \sqrt{25}=5$ |  |
| $\sqrt{x^{2}}=x^{1}=x$ |  |
| $4 x^{2}$ | 25 |
|  |  |
| $2 x \quad 2 x$ | 5 |

## Problem \#15 (Difference of Squares)

Factor the binomial completely.

$$
\text { 15) } 25 x^{2}-64 y^{2}
$$

Factored Form: ( + )( - )


Solution: $(5 x+8 y)(5 x-8 y) \quad \sqrt{y^{2}}=y^{1}=y$


## Problem \#16 (Difference of Squares)

Factor the binomial completely.

$$
\text { 16) } x^{4}-625
$$

$$
\sqrt{625}=25
$$

$$
\sqrt{x^{4}}=x^{2}
$$

Factored Form: ( + )( - )
Solution: $\left(x^{2}+25\right)$

$x^{4}$
625


Solution: $\left(x^{2}+25\right)(x-5)(x+5)$
16) $\left(x^{2}+25\right)(x+5)(x-5)$
 Factoring ONLY vs. Solving

Factor:
$x^{2}+6 x+8$ (x )(x )
Find factors of 8 that add to make 6. +8
Same Signs, Match Middle

$(x+2)(x+4)$ Solve:

$$
x^{2}+6 x+8=0
$$

$$
(x+2)(x+4)=0
$$

$$
(x+2)=0(x+4)=0
$$



## Problem \#17 (Factoring)

Solve the equation.

$$
\text { 17) } x^{2}+7 x-60=0
$$

Factored Form: $\left(\begin{array}{lll}x & ) & (x \quad)=0\end{array}\right.$

## Find factors of 60 that subtract to make 7.

Sign of bigger factor matches middle term $b x$

## Factored: $(x-5)(x+12)=0$

## Problem \#17 CONT...

Solve the equation.

$$
\text { 17) } x^{2}+7 x-60=0 \quad \text { 17) }-12,5
$$

Factored: $(x-5)(x+12)=0$

$$
(x-5)=0 \quad(x+12)=0
$$



## Problem \#18 (Factoring)

First Step, make

$$
\text { 18) } x^{2}-13 x=-40
$$ equation equal to 0 ADD 40 to both sides!

## Solve: $x^{2}-13 x+40=0$

Factored Form: $(x \quad)(x \quad)=0$
Find factors of 40 that add to make 13.

Same Signs, Match Middle

## Factored: $(x-5)(x-8)=0$

## Problem \#18 CONT...

$\begin{array}{r}\text { 18) } x^{2}-13 x\end{array}=-40$
Solve: $\mathbf{x}^{2}-\mathbf{1 3 x}+\mathbf{4 0}=\mathbf{0}$
Factored: $(\mathbf{x}-\mathbf{5})(\mathbf{x}-\mathbf{8})=\mathbf{0}$

$$
(x-5)=0 \quad(x-8)=0
$$



## Problem Solving (Types)

- Percent and Applications
- Proportions
- Perimeter (Rectangle)
- Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$


## Percent Applications (2 methods)

Proportion:
$\frac{P A R T}{\text { TOTAL }}=\frac{\%}{100}$
Key Words:

$$
\frac{I S}{O F}=\frac{\%}{100}
$$

What number/percent
$\rightarrow$ Variable

## Equation: Key Words: <br> IS: = <br> OF: Multiply

What number/percent
$\rightarrow$ Variable

## Problem \#19 (Problem Solving)

Translate to an equation and solve. 19) $75 \%$ of 84 is what number?
$75 \%$ of 84 is what number?

Proportion:

## Solve:


19) 63

## Equation to solve:

 $100 x=75 \cdot 84$
## $100 \mathrm{x}=6300$

## Problem \#19 (Method \#2)

Translate to an equation and solve. 19) $75 \%$ of 84 is what number?
$75 \%$ of 84 is what number?

## Change 75\% $\boldsymbol{\rightarrow} 0.75$

## Equation to solve: <br> $$
0.75 \cdot 84=x
$$



## 19) 63

## Problem \#20 (Problem Solving)

Translate to an equation and solve. 20) 90 is what percent of 60 ? 90 is what percent of 60?

Proportion:

$$
\frac{I S}{O F}=\frac{\%}{100}
$$

## Equation to solve:

 $60 x=90 \cdot 100$$60 x=9000$

## 20) $150 \%$

$$
x=150 \%
$$

## Problem \#20 (Method \#2)

Translate to an equation and solve.
20) 90 is what percent of 60 ?

90 is what percent of 60?

## Equation to solve: $90=x \cdot 60$



Change $1.5 \rightarrow 150 \%$

## Problem \#21 (Problem Solving)

Translate to an equation and solve.
Proportion:


## Problem \#21 (Method \#2)

Translate to an equation and solve.
21) $125 \%$ of what number is 75 ?
$125 \%$ of what number is 75 ?

## Change 125\% $\rightarrow 1.25$

## Equation to solve: $1.25 \cdot x=75$

## 21) 60



$$
x=\frac{75}{1.25}=\frac{7500}{125}=60
$$

## Problem \#22 (Problem Solving)

Solve.
22) A $\$ 230$ painting is on sale at $5 \%$ off. Find the sale price.

Proportion:


Total = \$230; Percent = 5\%
Part is missing (Discount Amount)
Equation to solve:
$100 x=230 \cdot 5$
$100 x=1150$
22) $\$ 218.50$
$\mathrm{x}=\$ 11.50$ (Discount)
Sales Price $=\$ 230-\$ 11.50=\$ 218.50$

## Problem \#22 (Alternative Method)

 Solve.22) A $\$ 230$ painting is on sale at $5 \%$ off. Find the sale price.

Total = \$230
Percent = 5\%

## of: key word for multiply!

Discount =5\% of 120,000

## Solve: (0.05)(230)

## = \$11.50 (Discount)

Sales Price $=\$ 230-\$ 11.50=\$ 218.50$

$$
\text { 22) } \$ 218.50
$$

## Problem \#23 (Problem Solving)

Solve. If needed, round money amounts to two decimal places and all other amounts to one decimal place.
23) Students at Maple School earned $\$ 408$ selling candles. They want to accumulate $\$ 2000$ for a club trip. What percent of their goal has been reached?


## Problem \#23 (Alternative Method)

Solve. If needed, round money amounts to two decimal places and all other amounts to one decimal place.
23) Students at Maple School earned $\$ 408$ selling candles. They want to accumulate $\$ 2000$ for a club trip. Wha percent ff their goal has been reached?


## Problem \#24 (Problem Solving)

Substitute the given values into the formula and solve for the unknown variable.

$$
\text { 24) } \mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W} ; \mathrm{P}=24, \mathrm{~W}=6 \begin{aligned}
& \text { Just Plug-in: } \\
& \mathrm{P}=\mathbf{2 4}, \mathrm{W}=\mathbf{6}
\end{aligned}
$$

$$
P=2 L+2 W ; P=24, W=6
$$



## 24) 6

## $24=2 L+2(6)$ <br> $2 L+12=24$ <br> $24=\mathbf{2 L}+12$ <br> Solve: <br>  <br> $\mathrm{L}=6$



## Problem \#25 (Problem Solving)

## Solve.

25) You have taken up gardening for relaxation and have decided to fence in your new rectangular shaped masterpiece. The length of the garden is 2 meters and 48 meters of fencing 1) required to completely enclose it. What is the width of the garden?


## Problem \#26, 27 (Problem Solving)

Translate the question into a proportion. Do not solve. 26) $7 \%$ of what number is 43.3 ?

Proportion:
26) $7 \%$ of what number is 43.3 ?

IS \%
27) 38.8 is $65 \%$ of what number?
27) 38.8 is $65 \%$ of what number? $\overline{\boldsymbol{O F}}=\overline{100}$


$$
\text { 26) } \frac{43.3}{b}=\frac{7}{100}
$$

## 27) <br> $\frac{38.8}{b}=\frac{65}{100}$

$$
\text { 27) } \frac{38.8}{\mathrm{~b}}=\frac{65}{100}
$$

Menu

## Problem \#28 (Graphing)

Graph the linear equation by finding and plotting itsintercepts.

$$
\text { 28) } x+y=-2
$$




## Solution for \#28

$$
\text { 28) }(-2,0),(0,-2)
$$



## Problem \#29 (Graphing)

Graph the linear equation by finding and plotting its intercepts.
29) $16 y-4 x=-8$
x-intercept (Plug y $=0$ ): 16f() $-4 x=-8$

Solve:

$$
\begin{gathered}
-4 x=-8 ; \\
\text { x }=2 \\
\text { x-int: } \\
(2,0)
\end{gathered}
$$

$y$-intercept (Plug $x=0$ ):

$$
16 y-4(0)=-8
$$

Solve

$$
16 y=-8 ;
$$

$$
\begin{gathered}
y=-\frac{8}{16}=-\frac{1}{2} \\
y \text {-int: } \\
\left(0,-\frac{1}{2}\right)
\end{gathered}
$$

## Problem \#29 (Graphing)

Graph the linear equation by finding and plotting its intercepts.


## Solution for \#29

$$
\text { 29) }\left(0,-\frac{1}{2}\right),(2,0)
$$



## Problem \#30 (Graphing)

Graph the equation.


Slope-intercept form:

$$
\begin{aligned}
& y=m x+b \\
& y=\frac{2}{5} x-1
\end{aligned}
$$

First point: $(0,-1)$

## Problem \#30 (Alternative Method)

Graph the equation.

$$
\text { 30) } y=\frac{2}{5} x-1
$$

> For x = 0:
$y=\frac{2}{5}(0)-1$

$(0$,
$(5,-1)$
For $x=5$ :

$$
y=\frac{2}{5}(5)-1
$$

## Problem \#30 CONT...

Graph the equation.


| $x$ | $y$ |
| :---: | :---: |
| $(0,-1)$ |  |
| $(5,1)$ |  |

## Solution for \#30

30) 




## Problem \# 31 (Slope)

Find the slope of the line.

$$
\text { 31) } y=-8 x-10
$$

$$
\text { 31) } m=-8
$$

1) Remember slope-intercept form; $\mathbf{y}=\mathrm{m} x+\mathbf{b}$
2) The slope is the coefficient of $x ; m$. Number in front of $x$ is the slope.

$$
\begin{aligned}
& \text { The slope for } y=-8 x-10 \text { is }-8 \text {. } \\
& m=-8 \text { (SLOPE) }
\end{aligned}
$$

## Problem \#32 (Slope)

Find the slope of the line that passes through the points.

$$
\begin{aligned}
& \text { 32) }(-9,-5) \text { and }(8,7) \\
& \begin{array}{lllll}
x_{1} & y_{1} & x_{2} & y_{2}
\end{array} \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \mathrm{~m}=\frac{7--5}{8--9}=\frac{7+5}{8+9}=\frac{12}{17} \\
& \text { Slope between } 2 \text { points } \\
& \text { 32) } \frac{12}{17}
\end{aligned}
$$

## Problem \#32 (Checking)



## Problem \#33 (Graphing)

Graph.

$$
\text { 33) }-x+2 y=-7
$$

Any method is acceptable since no method is specified.

After Solving, we have:

$$
\begin{aligned}
& y=\frac{1}{2} x-\frac{7}{2} \rightarrow \\
& y=\frac{1}{2} x-3 \frac{1}{2}
\end{aligned}
$$

First point: $\left(0,-3 \frac{1}{2}\right)$

$$
\text { Slope }=\frac{1}{2}=\frac{U P 1}{\text { RIGHT } 2}
$$

Slope-intercept form:

$$
\begin{aligned}
& y=m x+b \\
& \text { Solve for } y .
\end{aligned}
$$

Slope-intercept form:

$$
\begin{aligned}
& y=m x+b \\
& y=\frac{1}{2} x-3 \frac{1}{2}
\end{aligned}
$$

## Problem \#33 CONT

Slope-intercept form:


$$
\begin{aligned}
& y=m x+b \\
& y=\frac{1}{2} x-3 \frac{1}{2}
\end{aligned}
$$

First point: $\left(0,-3 \frac{1}{2}\right)$

$$
\text { Slope }=\frac{1}{2}=\frac{U P 1}{\text { RIGHT } 2}
$$

## Problem \#33 (Alternative Method)

We must still solve for $y$ :
$y=\frac{1}{2} x-3 \frac{1}{2}$


For $x=0$ :
$y=\frac{1}{2}(\sigma)-3 \frac{1}{2}$

For $x=2$ :
$y=\frac{1}{2}(2)-3 \frac{1}{2}$

Menu

## Problem \#33 CONT...



## Solution for \#33

33) 



## Problem \#34 (Graphing)

Graph the linear equation by finding and plotting itsintercepts.


## Solution for \#34

34) 



## Problem \#35 (Intercepts)

Find the $\mathbf{x}$ - and $\mathbf{y}$-intercepts.

$$
35)(5,0),(0,4)
$$ 35) $4 x+5 y=20$

$x$-intercept (Plug $y=0$ ): $4 x+5!0)=20$

Solve:

$$
4 x=20
$$

$$
x=5
$$

x-int:

$$
(5,0)
$$

$$
y \text {-intercept (Plug } x=0 \text { ): }
$$

$$
4(0)+5 y=20
$$

$$
\begin{array}{|c|c|}
\hline x & y \\
\hline(\underline{5}, & 0) \\
\hline(0, & 4) \\
\hline
\end{array}
$$

Solve:

$$
\begin{gathered}
5 y=20 ; \\
y=4 \\
y \text {-int: } \\
(0,4)
\end{gathered}
$$

## Problem \#36 (Exponents)

## Multiply.

$$
\text { 36) } \left.\left(-3 m^{2} z^{4}\right)\left(2 m^{2} z^{2}\right) \quad 36\right)-6 m^{4} z^{6}
$$

1) Remember property: $x^{m} x^{n}=x^{m+n}$

EXAMPLE: $x^{5} x^{2}=x^{7}$
(For multiplication $\rightarrow$ ADD exponents for like variables)
2) For coefficients, multiply!

$$
\left(-3 m^{2} z^{4}\right)\left(2 m^{2} z^{2}\right)=-6 m^{4} z^{6}
$$

Menu

## Problem \#37, 38 (Simplifying)

## Combine like terms.

## 37) $6 \mathrm{~m}^{2}+10 \mathrm{~m}-17 \mathrm{~m}^{2}+5 \mathrm{~m}$

$6 m^{2}+10 m-17 m^{2}+5 m=-11 m^{2}+15 m$

$$
\begin{aligned}
& 98 x^{5}+4 x^{4}-3 x^{5} \\
& 9 x^{5}+4 x^{4}-3 x^{5}=6 x^{5}+4 x^{4}
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \text { 37) }-11 m^{2}+15 m \\
\text { 38) } 6 x^{5}+4 x^{4} \\
\hline
\end{array}
$$

## Problem \#39 (Polynomials)

Add and write the resulting polynomial in descending order of degree. 39) $(9 x+6)+(-11 x+4)$

Descending Order: Highest $\rightarrow$ Lowest Exponent Number/Constant is always last!
Concept: Combining Like Terms

$=-2 x+10$

$$
\text { 39) }-2 x+10
$$

## Problem \#40 (Polynomials)

Subtract the polynomials.

$$
\text { 40) }\left(4 x^{7}-8 x^{6}-5\right)-\left(2 x^{7}+11 x^{6}+19\right)
$$

Just copy Multiply by - 1 (change signs)

$$
\begin{aligned}
& \begin{array}{r}
4 x^{7} \\
-8 x^{6} \\
-2 x^{7}
\end{array} \\
& \hline
\end{aligned}
$$

## Problem \#41 (Exponents)

Simplify.

$$
\text { 41) }\left(-3 x y^{4}\right)^{4}
$$

$$
\text { 41) } 81 x^{4} y^{16}
$$

1) Remember property: $\left(x^{m}\right)^{n}=x^{m n}$

EXAMPLE: $\left(x^{5}\right)^{2}=x^{10}$
(For exponents to exponents $\rightarrow$ MULITPLY exponents for like variables)
2) For coefficients, raise to exponent like usual!

$$
\left(-3 x^{1} y^{4}\right)^{4}=(-3)^{4} x^{4} y^{16}
$$

$$
=81 x^{4} y^{16}
$$

Check: $\left(-3 x y^{4}\right)\left(-3 x y^{4}\right)\left(-3 x y^{4}\right)\left(-3 x y^{4}\right)=81 x^{4} y^{16}$

## Problem \#42 (Polynomials)

Multiply the binomials using FOIL.

$$
\text { 42) }(4 x+4)(x-3) \text { 42) } 4 x^{2}-8 x-12
$$

$$
(4 x+4)(x-3)
$$



$$
4 x^{2}-12 x
$$

$$
+4 x-12
$$

$$
4 x^{2}-8 x-12
$$

## Problem \#43 (Polynomials)

Multiply using the rules for special products.

$$
\text { 43) }(3 a - 4 \longdiv { 2 }
$$

Write the binomial twice!


$9 a^{2}$| $-12 a$ |
| :---: |
| $-12 a$ |
| +16 |

$9 a^{2}-24 a+16$

## Problem \#44 (Exponents)

## Simplify.

$$
\text { 44) } \left.\left(-3 a^{6} b^{4}\right)^{3} \quad 44\right)-27 a^{18} b^{12}
$$

1) Remember property: $\left(x^{m}\right)^{n}=x^{m n}$

EXAMPLE: $\left(x^{5}\right)^{2}=x^{10}$
(For exponents to exponents $\rightarrow$ MULITPLY exponents for like variables)
2) For coefficients, raise to exponent like usual!

$$
\left(-3 a^{6} b^{4}\right)^{3}=(-3)^{3} a^{18} b^{12}=-27 a^{18} b^{12}
$$

Check: $\left(-3 a^{6} b^{4}\right)\left(-3 a^{6} b^{4}\right)\left(-3 a^{6} b^{4}\right)=-27 a^{18} b^{12}$

## Problem \#45 (Polynomials)

Multiply using the rules for special products.

$9 m^{2}+3 m$

$$
|+3 m|+1
$$

$9 m^{2}+6 m+1$

## Simplifying Square Roots

## Know your perfect squares!

## We will factor our biggest perfect square!

| Perfect square | Square root | Perfect square | Square root | For variable, |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\sqrt{1}=1$ | 81 | $\sqrt{81}=9$ | divide exponent by 2 |
| 4 | $\sqrt{4}=2$ | 100 | $\sqrt{100}=10$ | EXAMPLES: |
| 9 | $\sqrt{9}=3$ | 121 | $\sqrt{121}=11$ | $\sqrt{x^{2}}=x^{1}=x$ |
| 16 | $\sqrt{16}=4$ | 144 169 | $\sqrt{144}=12$ | $\sqrt{x^{4}}=x^{2}$ |
| 25 36 | $\sqrt{25}=5$ $\sqrt{36}=6$ | 169 196 | $\sqrt{169}=13$ $\sqrt{196}=14$ | $\sqrt{x^{10}}=x^{5}$ |
| 49 | $\sqrt{49}=7$ | 225 | $\sqrt{225}=15$ | $\sqrt{x^{88}}=x^{44}$ |
| 64 | $\sqrt{64}=8$ |  |  | $\sqrt{x^{100}}=x^{50}$ |

## Problem \#46 (Square Roots/Radicals)

Simplify. Assume variables represent nonnegative values.


$$
\sqrt{x^{2}}=x
$$

## Nandem \#47 (Square Roots/Radicals)

Simplify. Assume variables represent nonnegative values.


## Problem \#48 (Square Roots/Radicals)

Simplify. Assume that all variables represent positive numbers.


## Problem \#49 (Square Roots/Radicals)

Simplify. Assume that all variables represent positive numbers.


## Problem \#50 (Square Roots/Radicals)

Add or subtract by first simplifying each radical and then combining any like radical terms. Assume that all variables represent positive real numbers.

$$
\text { 50) } 4 \sqrt{5}-7 \sqrt{20}
$$

$$
4 \sqrt{5}-7(2 \sqrt{5})
$$



$$
4 \sqrt{5}-14 \sqrt{5}
$$


$2 \sqrt{5}$

$$
-10 \sqrt{5}
$$

$$
\text { 50) }-10 \sqrt{5}
$$

## Problem \#51 (Square Roots/Radicals)

Back to
Menu

Add or subtract by first simplifying each radical and then combining any like radical terms. Assume that all variables represent positive real numbers.


## Problem \#52 (Equations)

Solve the equation for the indicated variable.
52) $\mathrm{A}=\mathrm{P}+\mathrm{PRT}$ for T


## Problem \#53 (Equations)

Solve the equation for the indicated variable.


## Problem \#54 (Equations)

Solve the equation.

$$
\begin{aligned}
& \text { 54) } 3 x=4(x+4)-5 \\
& 3 x=4(x+4)-5 \\
& 3 x=4 x+16-5 \\
& \begin{array}{r}
3 x \\
-4 x-4 x+11
\end{array}
\end{aligned}
$$

$x=-11$
54) -11

## Problem \#55 (Equations)

Solve the equation.


$$
\begin{gathered}
-4 x-12-36=-24 \\
-4 x-48=-24 \\
+4 \& \quad+48
\end{gathered}
$$

$$
\begin{aligned}
& x=-6 \\
& 55)-6
\end{aligned}
$$

## Problem \#56 (Equations)

Solve. 56) $\frac{6}{5} x=-\frac{1}{2}-\frac{3}{5}$
$2 \quad 5 \quad 2$
-

## Clear fractions! LCD = 10



## Problem \#57 (Equations)

Solve. 57) $\frac{a}{3}-\frac{1}{3}=-5$

$$
\begin{aligned}
& \frac{a}{3} \frac{1}{3}=-5 \cdot 3 \\
& a-1 /=-15 \\
& +1=-14 \\
& \mathbf{f}=57)-14
\end{aligned}
$$

## Clear fractions!

 LCD = 3

## Problem \#58 (Equations)

Solve. 58) $\frac{5}{3}-\frac{x}{5}=\frac{13}{15}$

$$
\begin{aligned}
& 5 \quad 3 \\
& 5-\frac{1}{5}=\frac{13}{15} \\
& 5 \cdot 5-3 x=13 \\
& 25-3 x=13 \\
& -25 \\
& -25 \\
& -3 x=-12
\end{aligned}
$$

Clear fractions! LCD = 15

$-\frac{\beta x}{-\beta}=$| -12 |
| :--- |
| -3 |

$x=4$
58) 4

## Problem \#59 (Equations)

Solve the equation.

$$
\text { 59) } 7 x-7=5 x-8
$$

Get variable to 1 side!

$2 x=-1$

## Problem \#60 (Equations)

Solve the equation.

Clear Decimals!
Move decimal point 2 places over.

$$
\text { 60) } 1.4 x-3.1=0.7 x-1.98
$$

$1.40 x-3.10=0.70 x-1.98$
$\begin{aligned} & 140 x \\ &-70 x \\ &-310==70 x-198 \\ &-70 x\end{aligned}$

$70 x=112$

## Problem \#60 CONT...

Solve the equation.

$$
\text { 60) } \begin{aligned}
& 1.4 x-3.1=0.7 x-1.98 \\
& \frac{\mathbf{7 0 x}}{\mathbf{7 0}}=\frac{\mathbf{1 1 2}}{\mathbf{7 0}} \\
& \frac{\mathbf{1 1 2} \div 2}{\frac{\mathbf{7 0}}{\mathbf{7 0}} \div \frac{\mathbf{5 6}}{\mathbf{3 5}} \div 7=\frac{\mathbf{8}}{\mathbf{5}} \quad \text { DIVIDE! }} \\
& \mathbf{X}=\mathbf{1 . 6} \quad 60) 1.6
\end{aligned}
$$

## Problem \#61 (Equations)

Solve the equation.

## Clear Decimals!

Move decimal point 2 places over.

$$
\text { 61) }-0.7 x+1.15=-0.4 x+2.05
$$

$-0.70 x+1.15=-0.40 x+2.05$


## Graphing Inequalities

$$
\begin{array}{lll}
\text { For }<\text { or }>: & \text { O } & () \\
\text { For } \leq \text { or } \geq: & \text { [ } & \text { [ }
\end{array}
$$

## Interval Notation

$$
\begin{array}{ll}
\text { For }<\text { or }>: & \text { Use ( ) } \\
\text { For } \leq \text { or } \geq: & \text { Use [ ] } \\
\text { For }-\infty \text { or } \infty: & \text { Use ( ) } \\
& \text { ONLY! }
\end{array}
$$

## Problem \#62 (Inequalities)

Solve the inequality. Graph the solution set and write it in interval notation.


## Problem \#63 (Inequalities)

Solve the inequality. Graph the solution set and write it in interval notation.


## Problem \#63 CONT...

Solve the inequality. Graph the solution set and write it in interval notation.
63) $24 x+28 \leq 4(5 x+11)$


Interval Notation:

$$
(-\infty, 4]
$$


63) $(-\infty, 4]$


## Problem \#64 (Inequalities)

Solve the inequality.


## Problem \#64 CONT...

Solve the inequality.

$$
\text { 64) }-5(6 y+3)<-35 y+30
$$

## $y<9$



## Set-builder Notation: <br> $\{y \mid y<9\}$

$-\infty$


9
64) $\{y \mid y<9\}$


## Problem \#65 (Inequalities)

Solve the inequality.

$$
\text { 65) } \frac{y}{5}>6
$$

Since both sides are being multiplied by a positive 5, WE DO NOT FLIP INEQUALITY SYMBOL!


$$
\text { 65) }\{y \mid y>30\}
$$



## Problem \#66 (Problem Solving)

A fence is to be installed around a rectangular field.
The field's perimeter is 210 feet. The length of the field is 5 feet more than the width, find the length.


## Solve: <br> $4 w+10=210$



## Problem \#66 (Alternative Method)

A fence is to be installed around a rectangular field.
The field's perimeter is 210 feet. The length of the field is 5 feet more than the width, find the length.

$$
P=2 L+2 W
$$

SOLVE

$$
210=2(W+5)+2 W
$$

## SOLVE:

$210=2 W+10+2 W$

## Solve: <br> $4 w+10=210 \quad$ Width

$50+5=55 \mathrm{ft}$ Length

## Problem \#67 (Problem Solving)

A county assesses annual property taxes at a rate of $4 \%$ of the appraised value of the property. A property is appraised for $\$ 120,000$. What are the property taxes?

## Proportion: <br> $$
\frac{\text { PART }}{\text { TOTAL }}=\frac{\%}{100}
$$

Solve:


$$
=\$ 4,800
$$

## Problem \#67 (Alternative Method)

A county assesses annual property taxes at a rate of $4 \%$ of the appraised value of the property. A property is appraised for $\$ 120,000$. What are the property taxes?

```
Total = $120,000
Percent = 4%
Taxes = 4% Of 120,000
```


## Solve: $(0.04)(120,000)=\$ 4,800$



## Problem \#68 (Problem Solving/Square Roots)



Television Sets: What does it mean to refer to a 20 -in TV set or a 25 -in TV set? Such units refer the diagonal of the screen.
a) A 15-in TV set also has a width of 12 inches. What is its height?
b) A 20-in TV set also has a width of 16 inches. What is its height?


## Problem \#68 (Problem

 Solving/Square Roots) PART ATelevision Sets: What does it mean to refer to a 20 -in TV set or a $25-i n$ TV set? Such units refer the diagonal of the screen.
a) A 15-in TV set also has a width of 12 inches. What is its height?

$$
\text { Solve: } x^{2}+12^{2}=15^{2}
$$



## Problem \#68 (Problem

 Solving/Square Roots) PART BTelevision Sets: What does it mean to refer to a 20 -in TV set or a 25 -in TV set? Such units refer the diagonal of the screen.
b) A 20-in TV set also has a width of 16 inches. What is its height?

$$
\text { Solve: } x^{2}+16^{2}=20^{2}
$$



16 in

## Pythagorean Triples



Common Pythagorean Values:

1) $3,4,5$
2) $5,12,13$
3) $8,15,17$
4) $7,24,25$
5) $9,40,41$


Times 3:

1) $9,12,15$

Times 4:

1) $12,16,20$

Times 10:
2) $50,120,130$

## Problem \#69 (Problem Solving)

People drive, on average, 11,400 miles per year. About how many miles each week is that? Round to the nearest tenth.

## NOTE: 1 year = 52 weeks

## 11, $400=219.23 \approx 219.2$ miles

52

## per week

## Long divide!

## Problem \#70 (Problem Solving)

A woman earns $\$ 2600$ per month and budgets $\$ 338$ per month for food. What percent of her monthly income is spent on food?


## MyMathLab Tips

## Pay careful attention to all instructions!


(Simplify your ary ver. Type an ordered pair. Use integers or fractions for any numbers in the expression.)

## MyMathLab Tips CONT...

Graph the linear equation by finding and plotting its intercepts. 34) $x+y=-5$


## How to Study...

1) This workshop is a good step towards studying for the final (Review this presentation and video)
2) Work on the practice final exam in MyMathLab with no help, notes, calculators, or any assistance and time yourself.
3) Review the workshop packet and try to do each problem by yourself with no help, notes, calculators, or any assistance.
4) Review your in-class exams, on-line quizzes, and on-line homework.
5) Visit the Math Connections for additional support and resources!
Study a little each day, DO NOT CRAM!!

## General Test Taking Tips

1) Preview the exam and do the problems that are easy and you are familiar with.
2) Pace yourself... do not spend too much time on any 1 problem.
3) DO NOT RUSH!
4) Go back and check your answers (if time allows).
5) Follow instructions carefully!
6) Double check your work!

When you submit your exam, review your exam!

Now go study and do well on your final exam!


