STA2023 TI-84 Skills

CH 4&5

The Plan

- Probability distribution in the List Menu
- Variance and Standard Deviation (in Probability) in the List Menu
- nCx, factorials, entering information correctly in BinomProb formula
- calculating z-scores
- CLT/StDev of sample means
- normalCDF with z, normalCDF with x
- invNorm
- binomPDF

Probability Distribution in the List Menu

When you're given x and frequency and you need to find the probability

and the mean.

- \rightarrow $X \rightarrow L_1 \{0, 1, 2, 3, 4, 5, 6\}$
- ightharpoonup f $\to L_2$ {2, 13, 17, 23, 14, 11, 4}

Probability Distribution in the List Menu

ENTRY SOLVE

- \blacktriangleright What's the sum of L_2 ?
- \triangleright sum (L_2)


```
NORMAL FLOAT AUTO a+bi RADIAN MP

Sum(L2)

84
```

Probability Distribution in the List Menu

 $L_3=L_2/\text{sum}(L_2)$

**Quick check!! sum(L_3) should equal 1.

NORMAL	FLOAT AL	JTO a+bi	RADIAN	MP	
L1	L2	Lз	Lч	Ls	3
0	2	0.0238			
1	13	0.1548			
2 3	17	0.2024			
3	23	0.2738			
4	14	0.1667			
5	11	0.131			
6	4	0.0476			
19(1)-0 02200052200524					

L3(1)=0.023809523809524

Probability: Finding the Variance and Mean

- ▶ We have x and P(x). We need μ , $(x \mu)^2 \cdot P(x)$, σ^2 , and σ .
- $\triangleright x \cdot P(x) = L_1 \cdot L_3 = L_4$

$$\mu$$
=2.988

```
NORMAL FLOAT AUTO a+bi DEGREE MP

Sum(L4)

2.988095238

■
```

Probability: Finding the Variance and Mean

Now, we have μ . Let's put $(x - \mu)^2 \cdot P(x)$ in L_5 .

$$\sigma^2 = \sum (x - \mu)^2 \cdot P(x)$$

$$\sigma = \sqrt{\sigma^2}$$

NORMAL	FLOAT	AUTO	a+bi	DEGREE	MP	Û
₁₀ C ₇						400
		• • • • • • • • • • • • • • • • • • • •				120

Binomial Probability: ${}_{n}C_{x}p^{x}q^{n-x}$

With an expected 70% chance of success, what is the probability of

getting exactly 5 successes in 7 trials?

BinomProb Formula: factorials, entering information correctly

BinomPDF

NORMAL FLOAT AUTO a+bi [DEGREE 1	^{1P} 🗓
$_{7}C_{5}(.7)^{5}(.3)^{2}$		
	0.31	76523
$\frac{7!}{(7-5)!5!}(.7)^5(.3)^2$		
binompdf(7,.7,5)	0.31	76523
<u></u>	0.31	76523

BinomPDF

- Captain America
- IronMan
- Thor
- Hulk
- Black Panther
- Captain Marvel
- Spider Man
- Dr Strange
- Black Widow
- Scarlet Witch
- Star Lord
- Hawkeye

What's the likelihood that the number of Avengers listed in purple blipped?

What is n? What is p? What is x?

calculating z-scores

► An average Japanese female is 158 cm tall with a standard deviation of 5.6 cm. Chisa is 164 cm tall. What is the z-score of Chisa's height?

$$z = \frac{x - \mu}{\sigma}$$

Central Limit Theorem

"What is the standard error?"

$$ightharpoonup \sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$$

▶ Standard deviation of 6.4 and a sample size of 40

When to use the z with \sqrt{n} (when to use CLT)

Z score (& normalCDF) of an individual	Z score (& normalCDF) of a sample
$z = \frac{x - \mu}{\sigma}$	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$

What two changes do you notice?

CLT/StDev of sample means

➤ You surveyed 47 college students who paid an average of \$435 for books this semester with a standard deviation of \$103. What is the probability that the true mean is greater than \$462?

normalCDF with z

 \blacktriangleright Given a z < -.24, what is the probability?

normalCDF with x

▶ Given that x < 47, the mean is 32, and the standard deviation is 7, what is the probability?

invNorm

▶ What z score is associated with 87% probability?

Have/Need

Have	Need	Do
Z	Area	normalCDF
Area	Z	invNorm